Python绘图技巧,主流绘图库

一、主流绘图库概览

1. 核心工具对比

库名称 特点 适用场景
Matplotlib 基础绘图库,高度可定制 科学绘图、论文图表
Seaborn 基于Matplotlib,统计图表优化 数据分布、关系可视化
Plotly 交互式可视化,支持网页输出 仪表盘、动态数据展示
Pandas 内置简易绘图接口 快速数据探索

2. 环境准备

复制代码
pip install matplotlib seaborn plotly pandas

二、Matplotlib基础与进阶

1. 基础绘图模板

复制代码
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体
matplotlib.rcParams['font.family'] = 'SimHei'  # 使用黑体字体,根据实际情况修改
# 生成数据
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)

# 创建画布
plt.figure(figsize=(8, 4), dpi=100)

# 绘制曲线
plt.plot(x, y, 
         color='#FF6B6B',  # 十六进制颜色
         linestyle='--', 
         linewidth=2,
         marker='o',
         markersize=5,
         label='sin(x)')

# 添加标注
plt.title("正弦函数曲线", fontsize=14, fontfamily='SimHei')  # 解决中文显示
plt.xlabel("X轴", fontsize=12)
plt.ylabel("Y轴", fontsize=12)
plt.legend(loc='upper right')  # 图例位置

# 网格与样式
plt.grid(True, linestyle=':', alpha=0.7)
plt.tight_layout()  # 自动调整布局

# 显示/保存
plt.savefig('sine_curve.png', bbox_inches='tight')  # 透明背景可加参数transparent=True
plt.show()

2. 多子图布局

复制代码
fig, axes = plt.subplots(2, 2, figsize=(10, 8))  # 2行2列

# 第一个子图
axes[0,0].plot(x, np.sin(x), label='正弦')
axes[0,0].set_title('正弦曲线')

# 第二个子图
axes[0,1].scatter(x, np.cos(x), c='green', marker='^')
axes[0,1].set_title('余弦散点')

# 第三个子图(直方图)
axes[1,0].hist(np.random.randn(1000), bins=30, 
              edgecolor='black', alpha=0.7)

# 第四个子图(填充图)
axes[1,1].fill_between(x, np.sin(x), np.cos(x), 
                      where=(np.sin(x) > np.cos(x)), 
                      color='skyblue', alpha=0.4)

plt.tight_layout()

三、Seaborn高效统计绘图

1. 分布可视化

复制代码
import seaborn as sns
import matplotlib.pyplot as plt
tips = sns.load_dataset('tips')

# 联合分布图
sns.jointplot(x='total_bill', y='tip', data=tips, 
             kind='hex',  # 可选 'reg'、'kde'
             marginal_kws={'color': '#4ECDC4'})

# 分类箱线图
plt.figure(figsize=(8,5))
sns.boxplot(x='day', y='total_bill', hue='sex', 
           data=tips, palette='Pastel1')
plt.title('每日消费分布')

2. 热力图与聚类

复制代码
# 相关性热力图
corr = tips.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', 
           linewidths=0.5, fmt='.2f')

# 聚类图
sns.clustermap(corr, cmap='viridis', 
              figsize=(6,6), method='ward')
复制代码
import plotly.express as px

# 散点图矩阵
fig = px.scatter_matrix(iris, 
                       dimensions=["sepal_length", "sepal_width", 
                                   "petal_length", "petal_width"],
                       color="species")
fig.show()

# 3D曲面图
x = np.linspace(-5, 5, 50)
y = np.linspace(-5, 5, 50)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

fig = px.surface(x=x, y=y, z=Z, 
                color_continuous_scale='Viridis')
fig.update_layout(title='3D曲面图')
fig.show()

四、Plotly交互式可视化

复制代码
import plotly.graph_objects as go
import numpy as np

# 生成3D数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

fig = go.Figure(data=[
    go.Surface(
        z=Z,
        colorscale='Viridis',
        contours={  # 添加等高线
            "z": {"show": True, "usecolormap": True}
        }
    )
])

# 添加控件按钮
fig.update_layout(
    title='3D动态曲面图',
    scene=dict(
        xaxis_title='X轴',
        yaxis_title='Y轴',
        zaxis_title='Z值',
        camera=dict(  # 预设视角
            eye=dict(x=1.5, y=1.5, z=0.1)
        )
    ),
    updatemenus=[  # 添加视角切换按钮
        dict(
            type="buttons",
            buttons=[
                dict(label="俯视",
                     method="relayout",
                     args=[{"scene.camera.eye": {"x": 0, "y": 0, "z": 2.5}}]),
                dict(label="侧视",
                     method="relayout",
                     args=[{"scene.camera.eye": {"x": 2, "y": 2, "z": 0.1}}])
            ],
            direction="left",
            pad={"r": 10, "t": 10},
            showactive=True,
            x=0.1,
            xanchor="left",
            y=1.1,
            yanchor="top"
        )
    ]
)

fig.show()
相关推荐
Anastasiozzzz2 分钟前
Java Lambda 揭秘:从匿名内部类到底层原理的深度解析
java·开发语言
刘琦沛在进步6 分钟前
【C / C++】引用和函数重载的介绍
c语言·开发语言·c++
alvin_200512 分钟前
python之OpenGL应用(二)Hello Triangle
python·opengl
机器视觉的发动机17 分钟前
AI算力中心的能耗挑战与未来破局之路
开发语言·人工智能·自动化·视觉检测·机器视觉
铁蛋AI编程实战20 分钟前
通义千问 3.5 Turbo GGUF 量化版本地部署教程:4G 显存即可运行,数据永不泄露
java·人工智能·python
HyperAI超神经25 分钟前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
jiang_changsheng33 分钟前
RTX 2080 Ti魔改22GB显卡的最优解ComfyUI教程
python·comfyui
R_.L35 分钟前
【QT】常用控件(按钮类控件、显示类控件、输入类控件、多元素控件、容器类控件、布局管理器)
开发语言·qt
Zach_yuan44 分钟前
自定义协议:实现网络计算器
linux·服务器·开发语言·网络
云姜.1 小时前
java多态
java·开发语言·c++