Python绘图技巧,主流绘图库

一、主流绘图库概览

1. 核心工具对比

库名称 特点 适用场景
Matplotlib 基础绘图库,高度可定制 科学绘图、论文图表
Seaborn 基于Matplotlib,统计图表优化 数据分布、关系可视化
Plotly 交互式可视化,支持网页输出 仪表盘、动态数据展示
Pandas 内置简易绘图接口 快速数据探索

2. 环境准备

复制代码
pip install matplotlib seaborn plotly pandas

二、Matplotlib基础与进阶

1. 基础绘图模板

复制代码
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体
matplotlib.rcParams['font.family'] = 'SimHei'  # 使用黑体字体,根据实际情况修改
# 生成数据
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)

# 创建画布
plt.figure(figsize=(8, 4), dpi=100)

# 绘制曲线
plt.plot(x, y, 
         color='#FF6B6B',  # 十六进制颜色
         linestyle='--', 
         linewidth=2,
         marker='o',
         markersize=5,
         label='sin(x)')

# 添加标注
plt.title("正弦函数曲线", fontsize=14, fontfamily='SimHei')  # 解决中文显示
plt.xlabel("X轴", fontsize=12)
plt.ylabel("Y轴", fontsize=12)
plt.legend(loc='upper right')  # 图例位置

# 网格与样式
plt.grid(True, linestyle=':', alpha=0.7)
plt.tight_layout()  # 自动调整布局

# 显示/保存
plt.savefig('sine_curve.png', bbox_inches='tight')  # 透明背景可加参数transparent=True
plt.show()

2. 多子图布局

复制代码
fig, axes = plt.subplots(2, 2, figsize=(10, 8))  # 2行2列

# 第一个子图
axes[0,0].plot(x, np.sin(x), label='正弦')
axes[0,0].set_title('正弦曲线')

# 第二个子图
axes[0,1].scatter(x, np.cos(x), c='green', marker='^')
axes[0,1].set_title('余弦散点')

# 第三个子图(直方图)
axes[1,0].hist(np.random.randn(1000), bins=30, 
              edgecolor='black', alpha=0.7)

# 第四个子图(填充图)
axes[1,1].fill_between(x, np.sin(x), np.cos(x), 
                      where=(np.sin(x) > np.cos(x)), 
                      color='skyblue', alpha=0.4)

plt.tight_layout()

三、Seaborn高效统计绘图

1. 分布可视化

复制代码
import seaborn as sns
import matplotlib.pyplot as plt
tips = sns.load_dataset('tips')

# 联合分布图
sns.jointplot(x='total_bill', y='tip', data=tips, 
             kind='hex',  # 可选 'reg'、'kde'
             marginal_kws={'color': '#4ECDC4'})

# 分类箱线图
plt.figure(figsize=(8,5))
sns.boxplot(x='day', y='total_bill', hue='sex', 
           data=tips, palette='Pastel1')
plt.title('每日消费分布')

2. 热力图与聚类

复制代码
# 相关性热力图
corr = tips.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', 
           linewidths=0.5, fmt='.2f')

# 聚类图
sns.clustermap(corr, cmap='viridis', 
              figsize=(6,6), method='ward')
复制代码
import plotly.express as px

# 散点图矩阵
fig = px.scatter_matrix(iris, 
                       dimensions=["sepal_length", "sepal_width", 
                                   "petal_length", "petal_width"],
                       color="species")
fig.show()

# 3D曲面图
x = np.linspace(-5, 5, 50)
y = np.linspace(-5, 5, 50)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

fig = px.surface(x=x, y=y, z=Z, 
                color_continuous_scale='Viridis')
fig.update_layout(title='3D曲面图')
fig.show()

四、Plotly交互式可视化

复制代码
import plotly.graph_objects as go
import numpy as np

# 生成3D数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

fig = go.Figure(data=[
    go.Surface(
        z=Z,
        colorscale='Viridis',
        contours={  # 添加等高线
            "z": {"show": True, "usecolormap": True}
        }
    )
])

# 添加控件按钮
fig.update_layout(
    title='3D动态曲面图',
    scene=dict(
        xaxis_title='X轴',
        yaxis_title='Y轴',
        zaxis_title='Z值',
        camera=dict(  # 预设视角
            eye=dict(x=1.5, y=1.5, z=0.1)
        )
    ),
    updatemenus=[  # 添加视角切换按钮
        dict(
            type="buttons",
            buttons=[
                dict(label="俯视",
                     method="relayout",
                     args=[{"scene.camera.eye": {"x": 0, "y": 0, "z": 2.5}}]),
                dict(label="侧视",
                     method="relayout",
                     args=[{"scene.camera.eye": {"x": 2, "y": 2, "z": 0.1}}])
            ],
            direction="left",
            pad={"r": 10, "t": 10},
            showactive=True,
            x=0.1,
            xanchor="left",
            y=1.1,
            yanchor="top"
        )
    ]
)

fig.show()
相关推荐
我不是QI9 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
今天没ID9 小时前
Python 编程实战:从基础语法到算法实现 (1)
python
二川bro9 小时前
Python在AI领域应用全景:2025趋势与案例
开发语言·人工智能·python
棒棒的皮皮9 小时前
【Python】Open3d用于3D测高项目
python·3d·open3d
CoderYanger9 小时前
优选算法-队列+宽搜(BFS):72.二叉树的最大宽度
java·开发语言·算法·leetcode·职场和发展·宽度优先·1024程序员节
CodeLongBear9 小时前
Python数据分析: 数据可视化入门:Matplotlib基础操作与多坐标系实战
python·信息可视化·数据分析
疏狂难除10 小时前
随便玩玩lldb (二)
开发语言·后端·rust
星轨初途10 小时前
数据结构排序算法详解(5)——非比较函数:计数排序(鸽巢原理)及排序算法复杂度和稳定性分析
c语言·开发语言·数据结构·经验分享·笔记·算法·排序算法
b***653210 小时前
GO 快速升级Go版本
开发语言·redis·golang
李晨卓10 小时前
python学习之不同储存方式的操作方法
python·代码规范