Python绘图技巧,主流绘图库

一、主流绘图库概览

1. 核心工具对比

库名称 特点 适用场景
Matplotlib 基础绘图库,高度可定制 科学绘图、论文图表
Seaborn 基于Matplotlib,统计图表优化 数据分布、关系可视化
Plotly 交互式可视化,支持网页输出 仪表盘、动态数据展示
Pandas 内置简易绘图接口 快速数据探索

2. 环境准备

复制代码
pip install matplotlib seaborn plotly pandas

二、Matplotlib基础与进阶

1. 基础绘图模板

复制代码
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体
matplotlib.rcParams['font.family'] = 'SimHei'  # 使用黑体字体,根据实际情况修改
# 生成数据
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)

# 创建画布
plt.figure(figsize=(8, 4), dpi=100)

# 绘制曲线
plt.plot(x, y, 
         color='#FF6B6B',  # 十六进制颜色
         linestyle='--', 
         linewidth=2,
         marker='o',
         markersize=5,
         label='sin(x)')

# 添加标注
plt.title("正弦函数曲线", fontsize=14, fontfamily='SimHei')  # 解决中文显示
plt.xlabel("X轴", fontsize=12)
plt.ylabel("Y轴", fontsize=12)
plt.legend(loc='upper right')  # 图例位置

# 网格与样式
plt.grid(True, linestyle=':', alpha=0.7)
plt.tight_layout()  # 自动调整布局

# 显示/保存
plt.savefig('sine_curve.png', bbox_inches='tight')  # 透明背景可加参数transparent=True
plt.show()

2. 多子图布局

复制代码
fig, axes = plt.subplots(2, 2, figsize=(10, 8))  # 2行2列

# 第一个子图
axes[0,0].plot(x, np.sin(x), label='正弦')
axes[0,0].set_title('正弦曲线')

# 第二个子图
axes[0,1].scatter(x, np.cos(x), c='green', marker='^')
axes[0,1].set_title('余弦散点')

# 第三个子图(直方图)
axes[1,0].hist(np.random.randn(1000), bins=30, 
              edgecolor='black', alpha=0.7)

# 第四个子图(填充图)
axes[1,1].fill_between(x, np.sin(x), np.cos(x), 
                      where=(np.sin(x) > np.cos(x)), 
                      color='skyblue', alpha=0.4)

plt.tight_layout()

三、Seaborn高效统计绘图

1. 分布可视化

复制代码
import seaborn as sns
import matplotlib.pyplot as plt
tips = sns.load_dataset('tips')

# 联合分布图
sns.jointplot(x='total_bill', y='tip', data=tips, 
             kind='hex',  # 可选 'reg'、'kde'
             marginal_kws={'color': '#4ECDC4'})

# 分类箱线图
plt.figure(figsize=(8,5))
sns.boxplot(x='day', y='total_bill', hue='sex', 
           data=tips, palette='Pastel1')
plt.title('每日消费分布')

2. 热力图与聚类

复制代码
# 相关性热力图
corr = tips.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', 
           linewidths=0.5, fmt='.2f')

# 聚类图
sns.clustermap(corr, cmap='viridis', 
              figsize=(6,6), method='ward')
复制代码
import plotly.express as px

# 散点图矩阵
fig = px.scatter_matrix(iris, 
                       dimensions=["sepal_length", "sepal_width", 
                                   "petal_length", "petal_width"],
                       color="species")
fig.show()

# 3D曲面图
x = np.linspace(-5, 5, 50)
y = np.linspace(-5, 5, 50)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

fig = px.surface(x=x, y=y, z=Z, 
                color_continuous_scale='Viridis')
fig.update_layout(title='3D曲面图')
fig.show()

四、Plotly交互式可视化

复制代码
import plotly.graph_objects as go
import numpy as np

# 生成3D数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

fig = go.Figure(data=[
    go.Surface(
        z=Z,
        colorscale='Viridis',
        contours={  # 添加等高线
            "z": {"show": True, "usecolormap": True}
        }
    )
])

# 添加控件按钮
fig.update_layout(
    title='3D动态曲面图',
    scene=dict(
        xaxis_title='X轴',
        yaxis_title='Y轴',
        zaxis_title='Z值',
        camera=dict(  # 预设视角
            eye=dict(x=1.5, y=1.5, z=0.1)
        )
    ),
    updatemenus=[  # 添加视角切换按钮
        dict(
            type="buttons",
            buttons=[
                dict(label="俯视",
                     method="relayout",
                     args=[{"scene.camera.eye": {"x": 0, "y": 0, "z": 2.5}}]),
                dict(label="侧视",
                     method="relayout",
                     args=[{"scene.camera.eye": {"x": 2, "y": 2, "z": 0.1}}])
            ],
            direction="left",
            pad={"r": 10, "t": 10},
            showactive=True,
            x=0.1,
            xanchor="left",
            y=1.1,
            yanchor="top"
        )
    ]
)

fig.show()
相关推荐
我材不敲代码17 小时前
Python实现打包贪吃蛇游戏
开发语言·python·游戏
身如柳絮随风扬18 小时前
Java中的CAS机制详解
java·开发语言
0思必得019 小时前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
韩立学长20 小时前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
qq_1927798720 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
u01092727120 小时前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊20 小时前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
froginwe1120 小时前
Scala 循环
开发语言
m0_7066532320 小时前
C++编译期数组操作
开发语言·c++·算法
故事和你9120 小时前
sdut-Java面向对象-06 继承和多态、抽象类和接口(函数题:10-18题)
java·开发语言·算法·面向对象·基础语法·继承和多态·抽象类和接口