推理大模型的后训练增强技术-从系统1到系统2:大语言模型推理能力的综述

35/100

发布文章

加粗

斜体

标题

删除线

无序

有序

待办

引用

代码块

运行代码

资源绑定

图片

视频

表格

超链接

投票

导入

导出

保存

撤销

重做

历史

new

模版

使用富文本编辑器

目录

创作助手

语法说明

markdown 复制代码
大家好,今天给大家推荐一篇很有趣的论文:《从系统1到系统2:大语言模型推理能力的综述》(From System 1 to System 2: A Survey of Reasoning Large Language Models)。


>论文链接:https://arxiv.org/abs/2502.17419


>仓库链接:https://github.com/zzli2022/Awesome-System2-Reasoning-LLM?tab=readme-ov-file


我们平时接触的AI,很多都是快速的、直觉型的,类似人类的"系统1",能快速回答问题,但碰到稍微复杂一点的任务,就可能"翻车"了。这篇论文探讨的,是如何让AI从这种"直觉型"思维,迈向更为深度和理性的"系统2"思维------也就是人类在面对复杂问题时,那种慢一点但更加谨慎和全面的思考模式。


作者指出,传统的大语言模型(LLM)在很多任务上表现惊艳,但在复杂的推理任务中仍然存在不足。最近,一些新型的推理型大语言模型,比如OpenAI推出的o1,在数学、编程等领域的表现甚至达到了专家级水平。这些模型的成功,意味着AI开始越来越接近人类深度思考的能力。


论文详细介绍了推理型大语言模型的发展历史、技术基础、性能评估基准和未来可能的发展方向。更棒的是,作者们还创建了一个实时更新的GitHub仓库,持续跟踪这个领域的最新动态。
![](https://p3-xtjj-sign.byteimg.com/tos-cn-i-73owjymdk6/93e93dc699b84b53916f4adc036dff6d~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg6Ie0R3JlYXQ=:q75.awebp?rk3s=f64ab15b&x-expires=1743218697&x-signature=HMPP0SH05CYcuS1bGQfStYwRDMs%3D)


研究团队认为,实现真正的人工智能,关键在于如何有效地让AI从快速的直觉反应,过渡到深度的、理性的思考。文章中附带的图片清晰地展示了AI系统如何从简单的直觉式决策一步步演进到具备复杂推理能力的过程。


![](https://p3-xtjj-sign.byteimg.com/tos-cn-i-73owjymdk6/d0d3bc71c3b649b09b0bbd7dbe04f709~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg6Ie0R3JlYXQ=:q75.awebp?rk3s=f64ab15b&x-expires=1743218697&x-signature=NiKLgDNApha5%2FtzuJlEQORFBfXE%3D)


目录如下:



- 第一部分:O1复制
- 第二部分:过程奖励模型
- 第三部分:强化学习
- 第四部分:蒙特卡洛树搜索(MCTS)/树搜索
- 第五部分:自训练/自我改进
- 第六部分:反思
- 第七部分:高效的系统2
- 第八部分:可解释性
- 第九部分:与多模态智能体相关的慢-快系统
- 第十部分:基准测试与数据集
- 第十一部分:推理与安全


>无论你是AI研究者、开发者,还是单纯对AI技术感兴趣,这篇综述文章都是了解最新推理型AI发展的绝佳窗口。


**感兴趣的小伙伴赶紧去看看吧!**

大家好,今天给大家推荐一篇很有趣的论文:《从系统1到系统2:大语言模型推理能力的综述》(From System 1 to System 2: A Survey of Reasoning Large Language Models)。

论文链接:arxiv.org/abs/2502.17...
仓库链接:github.com/zzli2022/Aw...

我们平时接触的AI,很多都是快速的、直觉型的,类似人类的"系统1",能快速回答问题,但碰到稍微复杂一点的任务,就可能"翻车"了。这篇论文探讨的,是如何让AI从这种"直觉型"思维,迈向更为深度和理性的"系统2"思维------也就是人类在面对复杂问题时,那种慢一点但更加谨慎和全面的思考模式。

作者指出,传统的大语言模型(LLM)在很多任务上表现惊艳,但在复杂的推理任务中仍然存在不足。最近,一些新型的推理型大语言模型,比如OpenAI推出的o1,在数学、编程等领域的表现甚至达到了专家级水平。这些模型的成功,意味着AI开始越来越接近人类深度思考的能力。

论文详细介绍了推理型大语言模型的发展历史、技术基础、性能评估基准和未来可能的发展方向。更棒的是,作者们还创建了一个实时更新的GitHub仓库,持续跟踪这个领域的最新动态。

研究团队认为,实现真正的人工智能,关键在于如何有效地让AI从快速的直觉反应,过渡到深度的、理性的思考。文章中附带的图片清晰地展示了AI系统如何从简单的直觉式决策一步步演进到具备复杂推理能力的过程。

目录如下:

  • 第一部分:O1复制
  • 第二部分:过程奖励模型
  • 第三部分:强化学习
  • 第四部分:蒙特卡洛树搜索(MCTS)/树搜索
  • 第五部分:自训练/自我改进
  • 第六部分:反思
  • 第七部分:高效的系统2
  • 第八部分:可解释性
  • 第九部分:与多模态智能体相关的慢-快系统
  • 第十部分:基准测试与数据集
  • 第十一部分:推理与安全

无论你是AI研究者、开发者,还是单纯对AI技术感兴趣,这篇综述文章都是了解最新推理型AI发展的绝佳窗口。

感兴趣的小伙伴赶紧去看看吧!

Markdown 已选中 1048 字数 35 行数 当前行 35, 当前列 18

HTML 882 字数 21 段落

相关推荐
格林威12 分钟前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
倔强青铜三1 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
B站计算机毕业设计之家1 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
高工智能汽车1 小时前
棱镜观察|极氪销量遇阻?千里智驾左手服务吉利、右手对标华为
人工智能·华为
txwtech1 小时前
第6篇 OpenCV RotatedRect如何判断矩形的角度
人工智能·opencv·计算机视觉
正牌强哥1 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare
倔强青铜三2 小时前
苦练Python第62天:零基础玩转CSV文件读写,csv模块实战
人工智能·python·面试
大模型真好玩2 小时前
低代码Agent开发框架使用指南(二)—Coze平台核心功能概览
人工智能·coze·deepseek
jerryinwuhan3 小时前
最短路径问题总结
开发语言·人工智能·python
wanhengidc3 小时前
云手机能够做些什么?
运维·服务器·人工智能·智能手机·云计算