Hive高频SQL及典型应用场景总结

Hive高频SQL及典型应用场景总结


一、基础操作类高频SQL

1. ‌**创建表(含分区/分桶)**‌

sql 复制代码
CREATE TABLE sales (
  employee_id STRING,
  sale_amount DOUBLE,
  trans_date DATE
) PARTITIONED BY (year INT, month INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS ORC;  -- 企业常用ORC/Parquet格式优化存储

场景‌

日志表按年月分区,提升查询效率(如按日期过滤时仅扫描特定分区)。

2. ‌数据加载‌

sql 复制代码
LOAD DATA INPATH '/hdfs/path/sales.csv' INTO TABLE sales;  
-- 从HDFS加载数据到分区表

二、分析类高频SQL

1. ‌窗口函数‌

  • Top N场景‌(如部门销售额Top 3员工)
sql 复制代码
SELECT employee_id, sale_amount,
       ROW_NUMBER() OVER (PARTITION BY dept ORDER BY sale_amount DESC) AS rank
FROM sales
WHERE rank <= 3;  -- 避免并列排名
  • 累计计算‌(如用户月度累计访问次数)
sql 复制代码
SELECT user_id, month,
       SUM(visit_cnt) OVER (PARTITION BY user_id ORDER BY month) AS total_visits
FROM user_logs;  -- 实现滚动累计统计

2. ‌LATERAL VIEW + EXPLODE‌(列转行)

sql 复制代码
SELECT user_id, product
FROM orders
LATERAL VIEW EXPLODE(product_list) tmp AS product;  
-- 展开JSON数组字段为多行

3. ‌行转列(Pivot)‌

sql 复制代码
SELECT customer_id, 
       CONCAT_WS(',', COLLECT_SET(product_name)) AS all_products
FROM purchases
GROUP BY customer_id;  
-- 聚合多行数据为字符串

三、高频聚合与条件操作

1. ‌聚合函数+分组‌

sql 复制代码
SELECT dept, AVG(salary), COUNT(DISTINCT employee_id)
FROM employees
GROUP BY dept;  -- 结合DISTINCT去重统计

2. ‌CASE WHEN条件分支‌

sql 复制代码
SELECT user_id,
       CASE WHEN total_spend > 10000 THEN 'VIP'
            WHEN total_spend > 5000 THEN '中级' 
            ELSE '普通' END AS user_level
FROM orders;  -- 用户分层场景

四、高频面试SQL题示例

1. ‌Top N问题‌

sql 复制代码
SELECT * FROM (
  SELECT *, DENSE_RANK() OVER (ORDER BY sale_amount DESC) AS rank
  FROM sales
) tmp WHERE rank <= 5;  -- 处理并列排名

2. ‌时间区间统计‌

sql 复制代码
SELECT user_id,
       SUM(IF(month BETWEEN 1 AND 3, amount, 0)) AS Q1_sales
FROM orders
GROUP BY user_id;  -- 按季度汇总销售额

3. ‌连续登录用户‌

sql 复制代码
SELECT user_id
FROM (
  SELECT user_id, 
         LEAD(login_date, 2) OVER (PARTITION BY user_id ORDER BY login_date) AS date_plus2
  FROM logins
) tmp WHERE DATEDIFF(date_plus2, login_date) = 2;  -- 检测连续3天登录

五、优化类高频操作

1. ‌分区过滤‌

sql 复制代码
SELECT * FROM sales 
WHERE year=2025 AND month=3;  -- 分区裁剪减少数据扫描量

2. ‌避免笛卡尔积‌

sql 复制代码
SELECT a.id, b.name
FROM table_a a
JOIN table_b b ON a.key = b.key;  -- 显式指定JOIN条件

核心总结

高频操作‌:窗口函数、行列转换、条件聚合

典型场景‌:日志分析、用户分层、报表生成

优化重点‌:分区/分桶设计、避免全表扫描、合理使用存储格式(ORC/Parquet)

相关推荐
Edingbrugh.南空17 分钟前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase
全星00743 分钟前
解锁研发高效密码:全星研发项目管理APQP软件的多维助力
大数据·汽车
王小王-1232 小时前
基于Hadoop的大规模文本词频统计分析系统设计与实现
hadoop·mapreduce·hadoop词频统计·hadoop文本统计·mapreduce词频统计
时序数据说2 小时前
为什么时序数据库IoTDB选择Java作为开发语言
java·大数据·开发语言·数据库·物联网·时序数据库·iotdb
Codebee3 小时前
OneCode图表配置速查手册
大数据·前端·数据可视化
Jamie201901064 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
陈敬雷-充电了么-CEO兼CTO4 小时前
推荐算法系统系列>推荐数据仓库集市的ETL数据处理
大数据·数据库·数据仓库·数据挖掘·数据分析·etl·推荐算法
小高不会迪斯科5 小时前
MIT 6.824学习心得(1) 浅谈分布式系统概论与MapReduce
大数据·mapreduce
TDengine (老段)5 小时前
使用 StatsD 向 TDengine 写入
java·大数据·数据库·时序数据库·iot·tdengine·涛思数据
Gauss松鼠会5 小时前
GaussDB权限管理:从RBAC到精细化控制的企业级安全实践
大数据·数据库·安全·database·gaussdb