深度学习复习笔记(8)特征提取与无监督学习

高维向量:人类无法理解的维度。

无监督方法

PCA把(不同的1)维度下降并聚在一起。

自监督学习:自己当自己标签。

无监督学习:让相同的特征离得更近。

怎么离得更近?

对比学习:对原图进行增广,提取自己和自己(的增广)共同的特征(交集),归为一类。

(模型必须具有特征提取能力)

对抗生成网络:判别器和生成器对抗,性能越来越好。

***关注模型的训练时,最该关注梯度从何而来。

回归任务梯度来源于真实值y于预测值y的差距。

分类任务梯度来源于两个概率分布的交叉熵损失。

GAN模型,判别器梯度来源于分类任务,生成器把判别器的准确率当成他的梯度(越低越好)。

现在不用GAN,都用扩散模型。

Cycle-GAN:

生成式自监督

loss来源于原始图片与还原图片之间的差异。

第一种:

把自己的一部分当作标签。模型只看到一部分,然后生成一张图片,和自己的原图进行对比生成loss。

第二种:

原图的黑白当作x,彩色当作y

文字的自监督:(效果很好,网上文字资料很多)

把遮盖后的文字当成x,原来的文字当作y。

预训练:预训练的任务和后面的任务没有关系,只是让模型具有特征提取能力。

经过预训练的模型,下游任务只需要少量的数据。

特征分离:将不同的图片提取出风格和内容特征,再用一张图片的风格特征融合另一张的内容。

如何提取出风格和内容特征?

可以用两个分类任务,一个风格分类任务,一个内容分类任务。

AI在玩特征,本质是进行特征的变换。

相关推荐
Work(沉淀版)2 小时前
DAY 40
人工智能·深度学习·机器学习
拾忆-eleven3 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5164 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
萌新小码农‍7 小时前
Spring框架学习day7--SpringWeb学习(概念与搭建配置)
学习·spring·状态模式
蓝婷儿7 小时前
6个月Python学习计划 Day 15 - 函数式编程、高阶函数、生成器/迭代器
开发语言·python·学习
行云流水剑7 小时前
【学习记录】深入解析 AI 交互中的五大核心概念:Prompt、Agent、MCP、Function Calling 与 Tools
人工智能·学习·交互
love530love7 小时前
【笔记】在 MSYS2(MINGW64)中正确安装 Rust
运维·开发语言·人工智能·windows·笔记·python·rust
狂小虎7 小时前
02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
深度学习·神经网络·逻辑回归
一弓虽7 小时前
zookeeper 学习
分布式·学习·zookeeper
苗老大7 小时前
MMRL: Multi-Modal Representation Learning for Vision-Language Models(多模态表示学习)
人工智能·学习·语言模型