深度学习复习笔记(8)特征提取与无监督学习

高维向量:人类无法理解的维度。

无监督方法

PCA把(不同的1)维度下降并聚在一起。

自监督学习:自己当自己标签。

无监督学习:让相同的特征离得更近。

怎么离得更近?

对比学习:对原图进行增广,提取自己和自己(的增广)共同的特征(交集),归为一类。

(模型必须具有特征提取能力)

对抗生成网络:判别器和生成器对抗,性能越来越好。

***关注模型的训练时,最该关注梯度从何而来。

回归任务梯度来源于真实值y于预测值y的差距。

分类任务梯度来源于两个概率分布的交叉熵损失。

GAN模型,判别器梯度来源于分类任务,生成器把判别器的准确率当成他的梯度(越低越好)。

现在不用GAN,都用扩散模型。

Cycle-GAN:

生成式自监督

loss来源于原始图片与还原图片之间的差异。

第一种:

把自己的一部分当作标签。模型只看到一部分,然后生成一张图片,和自己的原图进行对比生成loss。

第二种:

原图的黑白当作x,彩色当作y

文字的自监督:(效果很好,网上文字资料很多)

把遮盖后的文字当成x,原来的文字当作y。

预训练:预训练的任务和后面的任务没有关系,只是让模型具有特征提取能力。

经过预训练的模型,下游任务只需要少量的数据。

特征分离:将不同的图片提取出风格和内容特征,再用一张图片的风格特征融合另一张的内容。

如何提取出风格和内容特征?

可以用两个分类任务,一个风格分类任务,一个内容分类任务。

AI在玩特征,本质是进行特征的变换。

相关推荐
云小逸22 分钟前
【nmap源码学习】 Nmap网络扫描工具深度解析:从基础参数到核心扫描逻辑
网络·数据库·学习
OpenBayes1 小时前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
退休钓鱼选手2 小时前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
一只小小的芙厨2 小时前
寒假集训笔记·树上背包
c++·笔记·算法·动态规划
盐焗西兰花3 小时前
鸿蒙学习实战之路-Reader Kit构建阅读器最佳实践
学习·华为·harmonyos
哥布林学者3 小时前
吴恩达深度学习课程:深度学习入门笔记全集目录
深度学习·ai
xsc-xyc3 小时前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
深蓝海拓3 小时前
PySide6从0开始学习的笔记(二十七) 日志管理
笔记·python·学习·pyqt
xqqxqxxq3 小时前
Java Thread 类核心技术笔记
java·笔记
慎独4133 小时前
科学赋能,让孩子专注高效爱上学习
学习