【云馨AI-大模型】大模型的开发和应用中,Python、PyTorch和vLLM关系概括

说明

1. Python

  • 定位:基础编程语言。
  • 作用:Python 是大模型生态系统的核心语言,几乎所有深度学习框架(如 PyTorch、TensorFlow)和工具链(如 vLLM)都通过 Python 接口提供服务。
  • 特点:语法简单、生态丰富,适合快速实现算法原型和部署。

2. PyTorch

  • 定位:深度学习框架。
  • 作用
    • 模型训练:PyTorch 是训练大模型的核心工具,提供动态计算图、自动微分、分布式训练等功能。
    • 模型定义 :通过 PyTorch 的 torch.nn 模块定义模型架构(如 Transformer)。
    • 生态支持:与 Hugging Face Transformers 等库结合,支持预训练模型(如 GPT、LLaMA)的微调和部署。
  • 特点:灵活、易调试,适合研究和生产。

3. vLLM

  • 定位:大模型推理加速引擎。
  • 作用
    • 高效推理:针对大语言模型(LLM)的推理场景优化,通过内存管理和并行化技术(如 PagedAttention)显著提升吞吐量、降低延迟。
    • 兼容性:支持 Hugging Face 格式的 PyTorch 模型(如 LLaMA、GPT),与 PyTorch 生态无缝衔接。
    • 部署优化:提供异步推理、批处理、量化等功能,适用于生产环境。
  • 特点:专为 LLM 设计,性能远超原生 PyTorch 推理。

场景关系

三者的协作关系

  1. 开发流程

    • Python 编写代码。
    • PyTorch 定义和训练大模型。
    • vLLM 将训练好的 PyTorch 模型部署为高性能推理服务。
  2. 性能优化

    • PyTorch 负责训练阶段的灵活性和功能支持。
    • vLLM 负责推理阶段的高效执行,弥补 PyTorch 在推理时可能的内存和速度不足。
  3. 生态整合

    • 三者共同构成大模型的全生命周期工具链:Python(语言) → PyTorch(训练) → vLLM(部署)。

示例场景

  • 训练阶段:用 PyTorch 在 Python 中微调 LLaMA 模型。
  • 推理阶段:将训练好的模型导入 vLLM,通过几行 Python 代码启动高性能推理服务。

总结

  • Python 是基础语言,提供编程接口。
  • PyTorch 是模型开发的核心框架。
  • vLLM 是 PyTorch 模型的推理加速器,专为 LLM 设计。

三者共同支撑了大模型从开发到落地的全流程。

相关推荐
寒月霜华1 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu2 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师3 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
酷飞飞3 小时前
Python网络与多任务编程:TCP/UDP实战指南
网络·python·tcp/ip
cxr8284 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡4 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
数字化顾问4 小时前
Python:OpenCV 教程——从传统视觉到深度学习:YOLOv8 与 OpenCV DNN 模块协同实现工业缺陷检测
python
幂简集成5 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃5 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)5 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑