【自学笔记】Spark基础知识点总览-持续更新

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录


Apache Spark基础知识点总览

目录

  1. 简介
  2. 核心组件
  3. [Spark SQL](#Spark SQL)
  4. [DataFrame与Dataset API](#DataFrame与Dataset API)
  5. RDD(弹性分布式数据集)\](#rdd(弹性分布式数据集))

  6. MLlib(机器学习库)\](#mllib(机器学习库))

  7. 部署模式
  8. 示例代码

简介

Apache Spark是一个开源的分布式计算系统,旨在提供快速、通用的大规模数据处理和分析能力。它构建在Hadoop之上,但提供了比Hadoop MapReduce更丰富的数据处理方式,包括批处理、流处理、交互式查询和机器学习等。

核心组件

  • Driver Program:运行应用程序的主函数,负责创建SparkContext,并与Cluster Manager通信以申请资源。
  • Cluster Manager:在集群上获取资源的外部服务(如YARN、Mesos、Kubernetes或Spark自带的Standalone模式)。
  • Worker Node:运行应用程序代码的数据节点。
  • Executor:在Worker Node上为应用程序启动的进程,负责运行任务,并将结果返回给Driver。

Spark SQL

Spark SQL是Spark的一个模块,用于结构化数据的处理。它提供了一个DataFrame API,允许开发者以类似SQL的方式处理数据。

DataFrame与Dataset API

  • DataFrame:一个分布式数据集合,类似于关系数据库中的表或Python中的pandas DataFrame。
  • Dataset:DataFrame的扩展,提供了类型安全的操作。

RDD(弹性分布式数据集)

RDD是Spark中最基本的数据处理模型,是一个不可变的、分布式的数据集合。RDD允许用户进行低级别的数据操作,提供了丰富的转换(transformation)和动作(action)操作。

Spark Streaming

Spark Streaming是Spark的一个组件,用于处理实时数据流。它允许开发者以类似于批处理的方式处理实时数据,提供了高吞吐量和容错性。

MLlib(机器学习库)

MLlib是Spark的机器学习库,提供了常见的机器学习算法和工具,包括分类、回归、聚类、协同过滤等。

GraphX(图处理框架)

GraphX是Spark的图处理框架,提供了图数据的创建、转换和查询功能,适用于社交网络分析、推荐系统等应用场景。

部署模式

Spark支持多种部署模式,包括:

  • Local Mode:在单机上运行Spark。
  • Standalone Mode:使用Spark自带的集群管理器。
  • YARN:Hadoop的资源管理器。
  • Mesos:一个开源的集群管理器。
  • Kubernetes:容器编排平台。

示例代码

创建SparkContext

python 复制代码
from pyspark import SparkContext, SparkConf

conf = SparkConf().setAppName("MyApp").setMaster("local[*]")
sc = SparkContext(conf=conf)

创建RDD并执行操作

python 复制代码
data = [1, 2, 3, 4, 5]
rdd = sc.parallelize(data)
result = rdd.map(lambda x: x * 2).collect()
print(result)  # 输出: [2, 4, 6, 8, 10]

使用DataFrame API

python 复制代码
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("MyApp").getOrCreate()
df = spark.createDataFrame([(1, "Alice"), (2, "Bob")], ["id", "name"])
df.show()

使用Spark SQL

python 复制代码
df.createOrReplaceTempView("people")
result = spark.sql("SELECT name FROM people WHERE id = 1")
result.show()

总结

提示:这里对文章进行总结:

例如:以上就是今天要讲的内容,自学记录Spark基础知识点总览。

相关推荐
koo36439 分钟前
pytorch深度学习笔记9
pytorch·笔记·深度学习
Tob管理笔记43 分钟前
建筑业如何精准开拓优质客户?技术驱动下的方法论与实践
大数据·云计算·数据库开发
MM_MS1 小时前
Halcon控制语句
java·大数据·前端·数据库·人工智能·算法·视觉检测
日更嵌入式的打工仔1 小时前
Ehercat代码解析中文摘录<9>
笔记·ethercat
JZC_xiaozhong2 小时前
主数据同步失效引发的业务风险与集成架构治理
大数据·架构·数据一致性·mdm·主数据管理·数据孤岛解决方案·数据集成与应用集成
T06205142 小时前
【数据集】全国各地区教育139个相关指标数据集(2000-2024年)
大数据
看见繁华2 小时前
Linux 交叉编译实践笔记
linux·运维·笔记
故乡de云2 小时前
Vertex AI 企业账号体系,Google Cloud 才能完整支撑
大数据·人工智能
汽车仪器仪表相关领域2 小时前
AI赋能智能检测,引领灯光检测新高度——NHD-6109智能全自动远近光检测仪项目实战分享
大数据·人工智能·功能测试·机器学习·汽车·可用性测试·安全性测试
木头程序员2 小时前
大模型边缘部署突破:动态推理技术与精度-延迟-能耗帕累托优化
大数据·人工智能·计算机视觉·自然语言处理·智能手机·数据挖掘