年龄预测识别模型训练python代码

涵盖断点续训、早停机制、定期保存检查点等

检查点保存逻辑

检查点保存分为两种:

最新检查点:每次训练都会保存为 latest.pth,用于恢复训练。

最佳模型:仅在验证损失达到新低时保存为 model_best.pth。

定期保存(每 checkpoint_interval 轮)也确保了即使训练中断,也能恢复到最近的状态。

  1. 早停机制

当验证损失连续 early_stop_patience 轮未改善时,触发早停,避免过拟合或浪费计算资源。

这是一个非常实用的功能,特别是在超参数调试阶段。

  1. 命令行参数支持

使用 argparse 支持通过命令行指定恢复训练的检查点路径,提升了脚本的灵活性。

  1. CUDA基准模式

启用 torch.backends.cudnn.benchmark = True 可以加速卷积操作,尤其是在输入尺寸固定的情况下。

复制代码
"""
一个黑客创业者:年龄预测模型完整训练(支持CPU/GPU、断点续训、早停机制)
执行方式:
1. 训练:python train_age.py
2. 恢复:python train_age.py --resume ./checkpoints/latest.pth
"""

import os
import time
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, models
from PIL import Image
from tqdm import tqdm

# 配置参数
CONFIG = {
    # 数据路径
    "train_age_list": r"D:\daku\性别\megaage_asian\list\train_age.txt",
    "val_age_list": r"D:\daku\性别\megaage_asian\list\test_age.txt",
    "train_image_dir": r"D:\daku\性别\megaage_asian\train",
    "val_image_dir": r"D:\daku\性别\megaage_asian\val",

    # 训练参数
    "batch_size": 64,
    "num_workers": 4 if torch.cuda.is_available() else 2,
    "learning_rate": 3e-4,
    "num_epochs": 100,
    "input_size": 224,

    # 系统参数
    "checkpoint_dir": "./checkpoints",
    "checkpoint_interval": 1,
    "early_stop_patience": 7,
    "use_amp": torch.cuda.is_available(),  # 自动判断是否启用混合精度
    "resume": None
}


class AgeDataset(Dataset):
    """处理序号命名图片和年龄列表的数据集"""

    def __init__(self, age_list_path, image_dir, transform=None):
        self.image_dir = image_dir
        self.transform = transform

        # 加载年龄数据
        with open(age_list_path, 'r') as f:
            self.ages = []
            line_count = 0
            for line in f:
                line_count += 1
                line = line.strip()
                try:
                    age = float(line)
                    if 0 <= age <= 120:
                        self.ages.append(age)
                    else:
                        print(f"行 {line_count}: 异常年龄值 {age},已过滤")
                except ValueError:
                    print(f"行 {line_count}: 无效年龄值 '{line}',已跳过")

        # 加载并排序图片文件
        self.image_files = sorted(
            [f for f in os.listdir(image_dir)
             if f.lower().endswith(('.jpg', '.jpeg', '.png'))],
            key=lambda x: int(os.path.splitext(x)[0])
        )

        # 对齐数据长度
        self.num_samples = min(len(self.ages), len(self.image_files))
        if len(self.ages) != len(self.image_files):
            print(
                f"警告: 年龄数({len(self.ages)})与图片数({len(self.image_files)})不一致,使用前{self.num_samples}个样本")

    def __len__(self):
        return self.num_samples

    def __getitem__(self, idx):
        # 生成图片路径
        img_name = self.image_files[idx]
        img_path = os.path.join(self.image_dir, img_name)

        # 加载图片
        try:
            with Image.open(img_path) as img:
                image = img.convert('RGB')
        except Exception as e:
            print(f"图片加载失败: {img_path},错误: {str(e)}")
            return self[(idx + 1) % len(self)]  # 跳过错误样本

        # 获取年龄
        age = torch.tensor(self.ages[idx], dtype=torch.float32)

        if self.transform:
            image = self.transform(image)

        return image, age


def create_data_loaders():
    """创建数据加载器"""
    train_transform = transforms.Compose([
        transforms.Resize(256),
        transforms.RandomCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    val_transform = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    # 创建数据集
    train_set = AgeDataset(CONFIG["train_age_list"], CONFIG["train_image_dir"], train_transform)
    val_set = AgeDataset(CONFIG["val_age_list"], CONFIG["val_image_dir"], val_transform)

    print(f"\n数据集统计:")
    print(f"训练样本: {len(train_set)} | 验证样本: {len(val_set)}")

    # 创建数据加载器
    train_loader = DataLoader(
        train_set,
        batch_size=CONFIG["batch_size"],
        shuffle=True,
        num_workers=CONFIG["num_workers"],
        pin_memory=torch.cuda.is_available(),
        persistent_workers=torch.cuda.is_available()
    )

    val_loader = DataLoader(
        val_set,
        batch_size=CONFIG["batch_size"],
        shuffle=False,
        num_workers=CONFIG["num_workers"],
        pin_memory=torch.cuda.is_available()
    )

    return train_loader, val_loader


class AgeRegressor(nn.Module):
    """年龄回归模型"""

    def __init__(self, pretrained=True):
        super().__init__()
        base_model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT if pretrained else None)
        self.feature_extractor = nn.Sequential(*list(base_model.children())[:-1])
        self.regressor = nn.Sequential(
            nn.Linear(base_model.fc.in_features, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, 1)
        )

    def forward(self, x):
        features = self.feature_extractor(x).flatten(1)
        return self.regressor(features).squeeze(1)


def initialize_training(resume_path=None):
    """初始化训练环境"""
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"\n训练设备: {device}")

    # 初始化模型
    model = AgeRegressor().to(device)
    optimizer = optim.AdamW(model.parameters(), lr=CONFIG["learning_rate"], weight_decay=1e-4)
    criterion = nn.HuberLoss()

    # 自动处理AMP
    scaler = torch.cuda.amp.GradScaler(enabled=CONFIG["use_amp"]) if torch.cuda.is_available() else None
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=3)

    # 训练状态
    start_epoch = 0
    best_loss = float('inf')
    no_improve = 0

    # 断点续训
    if resume_path and os.path.exists(resume_path):
        checkpoint = torch.load(resume_path, map_location=device)
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        scheduler.load_state_dict(checkpoint['scheduler'])
        start_epoch = checkpoint['epoch'] + 1
        best_loss = checkpoint['best_loss']
        no_improve = checkpoint['no_improve']
        if scaler and 'scaler' in checkpoint:
            scaler.load_state_dict(checkpoint['scaler'])
        print(f"成功恢复训练状态,从第 {start_epoch} 轮开始")

    return {
        "device": device,
        "model": model,
        "optimizer": optimizer,
        "criterion": criterion,
        "scaler": scaler,
        "scheduler": scheduler,
        "start_epoch": start_epoch,
        "best_loss": best_loss,
        "no_improve": no_improve
    }


def train_epoch(model, device, train_loader, optimizer, criterion, scaler):
    """训练单个epoch"""
    model.train()
    total_loss = 0.0

    with tqdm(train_loader, desc="训练", unit="batch") as pbar:
        for images, labels in pbar:
            images = images.to(device, non_blocking=True)
            labels = labels.to(device, non_blocking=True)

            optimizer.zero_grad(set_to_none=True)

            # 混合精度训练
            with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu',
                                enabled=CONFIG["use_amp"]):
                outputs = model(images)
                loss = criterion(outputs, labels)

            # 反向传播
            if scaler:
                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
            else:
                loss.backward()
                optimizer.step()

            total_loss += loss.item() * images.size(0)
            pbar.set_postfix(loss=loss.item())

    return total_loss / len(train_loader.dataset)


def validate(model, device, val_loader, criterion):
    """验证循环"""
    model.eval()
    total_loss = 0.0

    with torch.no_grad(), tqdm(val_loader, desc="验证", unit="batch") as pbar:
        for images, labels in pbar:
            images = images.to(device, non_blocking=True)
            labels = labels.to(device, non_blocking=True)

            outputs = model(images)
            loss = criterion(outputs, labels)

            total_loss += loss.item() * images.size(0)
            pbar.set_postfix(loss=loss.item())

    return total_loss / len(val_loader.dataset)


def save_checkpoint(state, filename, is_best=False):
    """保存检查点"""
    os.makedirs(CONFIG["checkpoint_dir"], exist_ok=True)
    filepath = os.path.join(CONFIG["checkpoint_dir"], filename)

    # 保存完整状态
    torch.save(state, filepath)

    # 保存最佳模型
    if is_best:
        best_path = os.path.join(CONFIG["checkpoint_dir"], "model_best.pth")
        torch.save(state["model"], best_path)


def main():
    # 初始化
    train_loader, val_loader = create_data_loaders()
    training_env = initialize_training(CONFIG["resume"])

    # 解包训练环境
    device = training_env["device"]
    model = training_env["model"]
    optimizer = training_env["optimizer"]
    criterion = training_env["criterion"]
    scaler = training_env["scaler"]
    scheduler = training_env["scheduler"]
    start_epoch = training_env["start_epoch"]
    best_loss = training_env["best_loss"]
    no_improve = training_env["no_improve"]

    # 训练循环
    for epoch in range(start_epoch, CONFIG["num_epochs"]):
        print(f"\nEpoch {epoch + 1}/{CONFIG['num_epochs']}")
        start_time = time.time()

        # 训练与验证
        train_loss = train_epoch(model, device, train_loader, optimizer, criterion, scaler)
        val_loss = validate(model, device, val_loader, criterion)
        scheduler.step(val_loss)

        # 统计信息
        epoch_time = time.time() - start_time
        lr = optimizer.param_groups[0]['lr']
        print(f"耗时: {epoch_time // 60:.0f}m{epoch_time % 60:.0f}s | LR: {lr:.1e} | "
              f"训练损失: {train_loss:.4f} | 验证损失: {val_loss:.4f}")

        # 保存检查点
        is_best = val_loss < best_loss
        if is_best:
            best_loss = val_loss
            no_improve = 0
        else:
            no_improve += 1

        checkpoint = {
            'epoch': epoch,
            'model': model.state_dict(),
            'optimizer': optimizer.state_dict(),
            'scheduler': scheduler.state_dict(),
            'scaler': scaler.state_dict() if scaler else None,
            'best_loss': best_loss,
            'no_improve': no_improve,
            'config': CONFIG
        }

        # 定期保存
        if is_best or (epoch + 1) % CONFIG["checkpoint_interval"] == 0:
            save_checkpoint(checkpoint, f"epoch_{epoch + 1}.pth", is_best)

        # 保存最新检查点
        save_checkpoint(checkpoint, "latest.pth")

        # 早停机制
        if no_improve >= CONFIG["early_stop_patience"]:
            print(f"\n早停触发: 验证损失连续 {CONFIG['early_stop_patience']} 轮未提升")
            break


if __name__ == "__main__":
    # 命令行参数
    parser = argparse.ArgumentParser()
    parser.add_argument('--resume', help='恢复训练的检查点路径')
    args = parser.parse_args()

    if args.resume:
        CONFIG["resume"] = args.resume

    # 设置CUDA基准模式
    if torch.cuda.is_available():
        torch.backends.cudnn.benchmark = True

    # 启动训练
    main()
相关推荐
ZEGO即构开发者2 分钟前
【ZEGO即构开发者日报】微信公众号上线“智能回复”功能;2025年8月中国应用/游戏厂商出海收入Top30榜;土耳其宣布将封禁29款社交/社媒应用……
人工智能·实时音视频·业界资讯·娱乐
1373i32 分钟前
【Python】通俗理解反向传播
深度学习·算法·机器学习
serve the people35 分钟前
召回率(Recall)
人工智能
迦蓝叶1 小时前
JAiRouter 0.8.0 发布:Docker 全自动化交付 + 多架构镜像,一键上线不是梦
java·人工智能·网关·docker·ai·架构·自动化
wzx_Eleven1 小时前
【论文阅读】Towards Privacy-Enhanced and Robust Clustered Federated Learning
论文阅读·人工智能·算法·机器学习·支持向量机·网络安全
CV-杨帆2 小时前
大模型在题目生成中的安全风险研究综述
人工智能·深度学习·安全
DisonTangor2 小时前
【阿里拥抱开源】Qwen团队开源新一代深度思考模型——Qwen3-Next-80B-A3B-Thinking
人工智能·学习·语言模型·开源·aigc
过河卒_zh15667663 小时前
9.12AI简报丨腾讯投资AI游戏平台,B站开源AniSora V3
人工智能·算法·游戏·aigc·算法备案·生成合成类算法备案
补三补四3 小时前
神经网络基本概念
人工智能·深度学习·神经网络