机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分为 K 个簇。其工作原理是通过迭代优化来确定簇的中心点,实现样本的聚类。

算法步骤如下:

  1. 随机选择 K 个样本作为初始簇中心。
  2. 根据每个样本和簇中心的距离将样本归类到最近的簇中。
  3. 计算每个簇的新中心,即该簇中所有样本的平均值。
  4. 重复步骤 2 和 3 直到簇中心不再发生变化或达到设定的迭代次数。

优点:

  1. 简单且易于实现。
  2. 可用于大规模数据集的聚类。
  3. 对于均匀分布的数据效果较好。

缺点:

  1. 需要调整簇数 K 的值,对结果影响较大。
  2. 对初始簇中心的选择敏感,结果可能会收敛到局部最优解。
  3. 对异常值和噪声敏感,可能导致聚类结果不稳定。

总的来说,K-均值聚类是一种简单且有效的聚类算法,适用于对数据集进行初步探索和分析。然而,在处理复杂数据集时,需要注意其局限性并考虑其他更适合的聚类算法。

相关推荐
CoderCodingNo1 小时前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法
大闲在人1 小时前
7. 供应链与制造过程术语:“周期时间”
算法·供应链管理·智能制造·工业工程
小熳芋1 小时前
443. 压缩字符串-python-双指针
算法
Charlie_lll1 小时前
力扣解题-移动零
后端·算法·leetcode
chaser&upper1 小时前
矩阵革命:在 AtomGit 解码 CANN ops-nn 如何构建 AIGC 的“线性基石”
程序人生·算法
weixin_499771551 小时前
C++中的组合模式
开发语言·c++·算法
iAkuya2 小时前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼2 小时前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
xiaoye-duck2 小时前
吃透 C++ STL list:从基础使用到特性对比,解锁链表容器高效用法
c++·算法·stl
松☆2 小时前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型