机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分为 K 个簇。其工作原理是通过迭代优化来确定簇的中心点,实现样本的聚类。

算法步骤如下:

  1. 随机选择 K 个样本作为初始簇中心。
  2. 根据每个样本和簇中心的距离将样本归类到最近的簇中。
  3. 计算每个簇的新中心,即该簇中所有样本的平均值。
  4. 重复步骤 2 和 3 直到簇中心不再发生变化或达到设定的迭代次数。

优点:

  1. 简单且易于实现。
  2. 可用于大规模数据集的聚类。
  3. 对于均匀分布的数据效果较好。

缺点:

  1. 需要调整簇数 K 的值,对结果影响较大。
  2. 对初始簇中心的选择敏感,结果可能会收敛到局部最优解。
  3. 对异常值和噪声敏感,可能导致聚类结果不稳定。

总的来说,K-均值聚类是一种简单且有效的聚类算法,适用于对数据集进行初步探索和分析。然而,在处理复杂数据集时,需要注意其局限性并考虑其他更适合的聚类算法。

相关推荐
hetao17338376 分钟前
2026-01-06 hetao1733837 的刷题笔记
c++·笔记·算法
a努力。19 分钟前
国家电网Java面试被问:最小生成树的Kruskal和Prim算法
java·后端·算法·postgresql·面试·linq
洛生&25 分钟前
Counting Towers
算法
Evand J34 分钟前
【MATLAB例程,附代码下载链接】基于累积概率的三维轨迹,概率计算与定位,由轨迹匹配和滤波带来高精度位置,带测试结果演示
开发语言·算法·matlab·csdn·轨迹匹配·候选轨迹·完整代码
X在敲AI代码37 分钟前
LeetCode 基础刷题D2
算法·leetcode·职场和发展
源代码•宸42 分钟前
Leetcode—1929. 数组串联&&Q1. 数组串联【简单】
经验分享·后端·算法·leetcode·go
数据大魔方1 小时前
【期货量化实战】跨期套利策略:价差交易完整指南(TqSdk源码详解)
数据库·python·算法·github·程序员创富
weixin_461769401 小时前
15. 三数之和
c++·算法·leetcode·三数之和
NAGNIP1 小时前
一文搞懂机器学习中的学习理论!
算法·面试
Evand J1 小时前
【MATLAB代码介绍】基于累积概率的三维轨迹匹配与定位,由轨迹匹配和卡尔曼滤波形成算法,带测试结果演示
算法·matlab·滤波·定位·导航·轨迹匹配