洛谷 P10463 Interval GCD Solution

Description

给定序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作分两种:

  • add ⁡ ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← a i + k a_i\gets a_i+k ai←ai+k.
  • query ⁡ ( l , r ) \operatorname{query}(l,r) query(l,r):求 ∣ gcd ⁡ ( a l , a l + 1 , ⋯   , a r ) ∣ |\gcd(a_l,a_{l+1},\cdots,a_r)| ∣gcd(al,al+1,⋯,ar)∣.

Limitations

1 ≤ n ≤ 5 × 1 0 5 1 \le n \le 5\times 10^5 1≤n≤5×105
1 ≤ m ≤ 1 0 5 1 \le m \le 10^5 1≤m≤105
1 ≤ a i ≤ 1 0 18 1 \le a_i \le 10^{18} 1≤ai≤1018
∣ k ∣ ≤ 1 0 18 |k|\le 10^{18} ∣k∣≤1018
任意时刻所有数均在 2 63 2^{63} 263 以内.
1 s , 512 MB 1\text{s},512\text{MB} 1s,512MB

Solution

区间加区间 gcd ⁡ \gcd gcd 不太好做,考虑转化成单点加.

首先要知道一条性质: gcd ⁡ ( x , y ) = gcd ⁡ ( x , y − x ) \gcd(x,y)=\gcd(x,y-x) gcd(x,y)=gcd(x,y−x).

那么就可以推式子了:
   g c d ( a l , a l + 1 , ⋯   , a r ) = g c d ( a l , a l + 1 − a l , a l + 1 , a l + 2 − a l + 1 , ⋯   , a r , a r − a r − 1 ) = g c d ( a l , a l + 1 − a l , a l + 2 − a l + 1 , ⋯   , a r − a r − 1 ) \begin{aligned} &\quad\; gcd(a_l,a_{l+1},\cdots,a_r)\\ &=gcd(a_l,a_{l+1}-a_l,a_{l+1},a_{l+2}-a_{l+1},\cdots,a_r,a_r-a_{r-1})\\ &=gcd(a_l,a_{l+1}-a_l,a_{l+2}-a_{l+1},\cdots,a_r-a_{r-1}) \end{aligned} gcd(al,al+1,⋯,ar)=gcd(al,al+1−al,al+1,al+2−al+1,⋯,ar,ar−ar−1)=gcd(al,al+1−al,al+2−al+1,⋯,ar−ar−1)

发现这就是差分,所以把差分数组拿到线段树上维护,就只需要单点加了.

用树状数组维护一下 a l a_l al 即可,注意答案要 abs.

Code

2.96 KB , 686 ms , 42.48 MB    (in total, C++20 with O2) 2.96\text{KB},686\text{ms},42.48\text{MB}\;\texttt{(in total, C++20 with O2)} 2.96KB,686ms,42.48MB(in total, C++20 with O2)

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

int lowbit(int x){
	return x & -x;
}

template<class T>
struct fenwick{
	int n;
	vector<T> c;
	
	fenwick() {}
	fenwick(int _n): n(_n){
		c.resize(n + 1);
	}
	
	fenwick(const vector<T> &a): n(a.size()){
		c.resize(n + 1);
		for(int i = 1; i <= n; i++){
			c[i] = c[i] + a[i - 1];
			int j = i + lowbit(i);
			if(j <= n) c[j] = c[j] + c[i];
		}
	}
	
	void add(int x, const T& v){
		for(int i = x + 1; i <= n; i += lowbit(i)) c[i] = c[i] + v;
	}
	
	T ask(int x){
		T ans{};
		for(int i = x + 1; i; i -= lowbit(i)) ans = ans + c[i];
		return ans;
	}
	
	T ask(int l, int r){
		return ask(r) - ask(l - 1);
	}
};

namespace seg_tree {
	inline int ls(int u) { return 2 * u + 1; }
	inline int rs(int u) { return 2 * u + 2; }
	
	struct Node {
		int l, r;
		i64 val;
	};
	
	struct SegTree {
		vector<Node> tr;
		inline SegTree() {}
		inline SegTree(const vector<i64>& a) {
			const int n = a.size();
			tr.resize(n << 2);
			build(0, 0, n - 1, a);
		}
		
		inline void pushup(int u) {
			tr[u].val = ::gcd(tr[ls(u)].val, tr[rs(u)].val);
		}
		
		inline void build(int u, int l, int r, const vector<i64>& a) {
			tr[u].l = l, tr[u].r = r;
			if (l == r) {
				tr[u].val = a[l];
				return;
			}
			const int mid = (l + r) >> 1;
			build(ls(u), l, mid, a);
			build(rs(u), mid + 1, r, a);
			pushup(u);
		}
		
		inline void add(int u, int p, i64 x) {
			if (tr[u].l == tr[u].r) {
				tr[u].val += x;
				return;
			}
			const int mid = (tr[u].l + tr[u].r) >> 1;
			if (p <= mid) add(ls(u), p, x);
			else add(rs(u), p, x);
			pushup(u);
		}
		
		inline i64 gcd(int u, int l, int r) {
			if (l <= tr[u].l && tr[u].r <= r) return llabs(tr[u].val);
			const int mid = (tr[u].l + tr[u].r) >> 1;
			i64 res = 0;
			if (l <= mid) res = ::gcd(res, gcd(ls(u), l, r));
			if (r > mid) res = ::gcd(res, gcd(rs(u), l, r));
			return llabs(res);
		}
	};
}
using seg_tree::SegTree;

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	int n, m;
	cin >> n >> m;
	
	vector<i64> a(n);
	for (int i = 0; i < n; i++) cin >> a[i];
	
	auto [fwk, sgt] = [&]() {
		vector<i64> b(n);
		adjacent_difference(a.begin(), a.end(), b.begin());
		return make_pair(fenwick<i64>(b), SegTree(b));
	}();
	
	auto query = [&](int l, int r) {
		return gcd(fwk.ask(l), (l < r ? sgt.gcd(0, l + 1, r) : 0LL));
	};
	auto add = [&](int l, int r, i64 v) {
		fwk.add(l, v), sgt.add(0, l, v);
		if (r + 1 < n) fwk.add(r + 1, -v), sgt.add(0, r + 1, -v);
	};
	
	for (int i = 0; i < m; i++) {
		char op; int l, r; i64 v;
		cin >> op >> l >> r, l--, r--;
		if (op == 'C') add(l, r, (cin >> v, v));
		else cout << query(l, r) << endl;
	}
	
	return 0;
}
相关推荐
草莓熊Lotso9 分钟前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
历程里程碑13 分钟前
Linux22 文件系统
linux·运维·c语言·开发语言·数据结构·c++·算法
你撅嘴真丑7 小时前
第九章-数字三角形
算法
在路上看风景7 小时前
19. 成员初始化列表和初始化对象
c++
uesowys8 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
zmzb01038 小时前
C++课后习题训练记录Day98
开发语言·c++
ValhallaCoder8 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮8 小时前
AI 视觉连载1:像素
算法
念风零壹8 小时前
C++ 内存避坑指南:如何用移动语义和智能指针解决“深拷贝”与“内存泄漏”
c++
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算