使用Python和OpenCV进行指纹识别与验证

在现代安全系统中,指纹识别因其唯一性和便捷性而成为一种广泛使用的生物识别技术。在本文中,我们将探讨如何使用Python编程语言和OpenCV库来实现一个基本的指纹识别和验证系统。

环境设置

首先,确保你的开发环境中安装了Python和OpenCV库。如果未安装,可以通过以下命令安装OpenCV:

bash 复制代码
pip install opencv-python

指纹识别原理

指纹识别主要依赖于图像处理技术来识别和比较指纹图像中的特征点。我们使用SIFT(尺度不变特征变换)算法来检测关键点并计算描述符,然后使用FLANN(快速最近邻)算法来匹配这些特征点。

一. 指纹验证

实现步骤

1. 图像读取与显示

我们首先读取指纹图像并使用OpenCV显示它们:

python 复制代码
import cv2

def cv_show(name, img): 
    cv2.imshow(name, img)
    cv2.waitKey(0)

src = cv2.imread("src.bmp")
model = cv2.imread("model.bmp")
cv_show('Source Image', src)
cv_show('Model Image', model)

2. 特征提取与匹配

接下来,我们使用SIFT算法提取关键点和描述符,并使用FLANN算法进行特征点匹配:

python 复制代码
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(src, None)
kp2, des2 = sift.detectAndCompute(model, None)
flann = cv2.FlannBasedMatcher()
matches = flann.knnMatch(des1, des2, k=2)

3. 筛选匹配点

使用Lowe's ratio test筛选匹配点,这是一种常用的方法来剔除错误匹配:

python 复制代码
good = []
for m, n in matches:
    if m.distance < 0.65 * n.distance:
        good.append(m)

4. 结果展示

我们将匹配成功的点在图像上进行标记,并显示结果:

python 复制代码
for i in good:
    x1, y1 = kp1[i.queryIdx].pt
    x2, y2 = kp2[i.trainIdx].pt
    cv2.circle(src, (int(x1), int(y1)), 3, (0, 0, 255), -1)
    cv2.circle(model, (int(x2), int(y2)), 3, (0, 0, 255), -1)
cv_show('Marked Source Image', src)
cv_show('Marked Model Image', model)

5. 验证结果

最后,我们可以根据匹配点的数量来判断指纹是否匹配:

python 复制代码
if len(good) >= 500:
    result = "Authentication Successful"
else:
    result = "Authentication Failed"
print(result)

6. 运行结果

二. 指纹识别

实现步骤

1. 图像读取与显示

首先,我们需要读取指纹图像并显示它们:

python 复制代码
import cv2

def cv_show(name, img): 
    cv2.imshow(name, img)
    cv2.waitKey(0)

2. 特征提取与匹配

接下来,我们使用SIFT算法提取关键点和描述符,并使用FLANN算法进行特征点匹配:

python 复制代码
def getNum(src, model):
    img1 = cv2.imread(src)
    img2 = cv2.imread(model)
    sift = cv2.SIFT_create()
    kp1, des1 = sift.detectAndCompute(img1, None)
    kp2, des2 = sift.detectAndCompute(img2, None)
    flann = cv2.FlannBasedMatcher()
    matches = flann.knnMatch(des1, des2, k=2)
    ok = []
    for m, n in matches:
        if m.distance < 0.8 * n.distance:
            ok.append(m)
    num = len(ok)
    return num

3. 获取指纹编号

然后,我们将输入的指纹与数据库中的指纹进行比较,找到匹配度最高的指纹,并获取其编号:

python 复制代码
def getID(src, database):
    max = 0
    for file in os.listdir(database):
        model = os.path.join(database, file)
        num = getNum(src, model)
        print("文件名:", file, "匹配点个数", num)
        if num > max:
            max = num
            name = file
    ID = name[0]
    if max < 100:
        ID = 9999
    return ID

4. 获取对应姓名

根据指纹编号,我们从预定义的字典中获取对应的姓名:

python 复制代码
def getName(ID):
    nameID = {0: '张三', 1: '李四', 2: '王五', 3: '赵六', 4: '朱老七', 5: '钱八',
              6: '曹九', 7: '王二麻子', 8: 'andy', 9: 'Anna', 9999: '没找到'}
    name = nameID.get(int(ID))
    return name

5. 主函数

最后,在主函数中,我们将上述步骤整合起来,实现指纹识别的完整流程:

python 复制代码
if __name__ == "__main__":
    src = "src.bmp"
    database = "database"
    ID = getID(src, database)
    name = getName(ID)
    print("识别结果为:", name)

6. 运行结果

三. 画出指纹匹配成功点

实现步骤

1. 图像读取与显示

首先,我们需要读取指纹图像并显示它们:

python 复制代码
import cv2

def cv_show(name, img): 
    cv2.imshow(name, img)
    cv2.waitKey(0)

src1 = cv2.imread("src1.bmp")
cv_show('Source Image 1', src1)
model = cv2.imread("model.bmp")
cv_show('Model Image', model)

2. 特征提取与匹配

接下来,我们使用SIFT算法提取关键点和描述符,并使用FLANN算法进行特征点匹配:

python 复制代码
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(src1, None)
kp2, des2 = sift.detectAndCompute(model, None)
flann = cv2.FlannBasedMatcher()
matches = flann.knnMatch(des1, des2, k=2)

3. 筛选匹配点

使用Lowe's ratio test筛选匹配点,这是一种常用的方法来剔除错误匹配:

python 复制代码
good = []
for m, n in matches:
    if m.distance < 0.4 * n.distance:
        good.append((m, n))

4. 标记匹配的特征点

在两个图像上标记匹配的特征点,并显示标记后的图像:

python 复制代码
aa = [m.queryIdx for m, n in good]
bb = [m.trainIdx for m, n in good]

for i in aa:
    x, y = kp1[i].pt
    cv2.circle(src1, (int(x), int(y)), 3, (0, 0, 255), -1)

for j in bb:
    x, y = kp2[j].pt
    cv2.circle(model, (int(x), int(y)), 3, (0, 0, 255), -1)

cv_show('Marked Source Image', src1)
cv_show('Marked Model Image', model)

5. 绘制匹配点连线

使用cv2.drawMatchesKnn函数绘制匹配点连线:

python 复制代码
matched_image = cv2.drawMatchesKnn(src1, kp1, model, kp2, good, None, flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)
cv_show('Matched Points', matched_image)

6. 运行结果

总结

通过本文的介绍,我们实现了一个基于Python和OpenCV的简单指纹识别和验证系统。这个系统可以有效地检测和匹配指纹图像中的关键点,从而实现身份验证。当然,这个系统还有许多可以改进的地方,比如提高匹配算法的准确性、优化用户界面等。

希望本文能为你提供一些有用的信息和启发,让你在生物识别技术的道路上更进一步

相关推荐
不爱吃鱼的猫-几秒前
PySide6控件:QFont设置、QColor调色板、QPixmap图像处理与QCursor光标自定义
python·pyqt·个人开发·pyside6
276695829210 分钟前
拼多多 anti-token unidbg 分析
java·python·go·拼多多·pdd·pxx·anti-token
我是个菜鸡.12 分钟前
Python-八股总结
开发语言·python
_zwy14 分钟前
【C++ 多态】—— 礼器九鼎,釉下乾坤,多态中的 “风水寻龙诀“
c语言·开发语言·c++
风暴之零17 分钟前
使用大语言模型进行Python图表可视化
人工智能·python·语言模型·数据可视化
安然无虞24 分钟前
31天Python入门——第17天:初识面向对象
后端·爬虫·python·职场和发展
www_pp_34 分钟前
# 基于 OpenCV 的运动目标检测与跟踪
人工智能·opencv·目标检测
倔强的石头10635 分钟前
【C++指南】vector(一):从入门到详解
开发语言·c++
程序员小远37 分钟前
Python+requests实现接口自动化测试框架
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·接口测试
A叶子叶44 分钟前
Kong网关部署研究
python·spring cloud·微服务·gateway·kong