深度学习——图像余弦相似度

计算机视觉是研究图像的学问,在图像的最终评价时,往往需要用到一些图像相似度的度量指标,因此,在本文中我们将详细地介绍原生和调用第三方库的计算图像余弦相似度的方法。

使用原生numpy实现

python 复制代码
import numpy as np

def image_cosine_similarity(img1, img2):
    """
    使用纯NumPy计算两张图像的余弦相似度
    """
    # 展平图像并转换为浮点数
    vec1 = img1.flatten()
    vec2 = img2.flatten()
    
    # 计算点积
    dot_product = np.dot(vec1, vec2)
    
    # 计算L2范数
    norm1 = np.linalg.norm(vec1)
    norm2 = np.linalg.norm(vec2)
    
    # 计算余弦相似度
    return dot_product / (norm1 * norm2)

使用sklearn实现

python 复制代码
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

def image_cosine_similarity_sklearn(img1, img2):
    """
    使用 sklearn 计算两张图像的余弦相似度
    
    参数:
        img1, img2: 两张图像(2D 灰度或 3D 彩色 numpy 数组)
    
    返回:
        余弦相似度(范围 [-1, 1],但图像通常为 [0, 1])
    """
    # 展平图像并转换为 float
    vec1 = img1.flatten().reshape(1, -1).astype(float)
    vec2 = img2.flatten().reshape(1, -1).astype(float)
    
    # 计算余弦相似度
    similarity = cosine_similarity(vec1, vec2)
    return similarity[0][0]  # 返回标量值
相关推荐
CareyWYR4 分钟前
每周AI论文速递(251013-251017)
人工智能
后端小肥肠6 分钟前
放弃漫画内卷!育儿赛道才是黑马,用 Coze 智能体做10w+育儿漫画,成品直接发
人工智能·agent·coze
whaosoft-1439 分钟前
51c~Pytorch~合集6
人工智能
后端小张11 分钟前
[AI 学习日记] 深入解析MCP —— 从基础配置到高级应用指南
人工智能·python·ai·开源协议·mcp·智能化转型·通用协议
天青色等烟雨..13 分钟前
AI+Python驱动的无人机生态三维建模与碳储/生物量/LULC估算全流程实战技术
人工智能·python·无人机
渡我白衣17 分钟前
深度学习进阶(七)——智能体的进化:从 LLM 到 AutoGPT 与 OpenDevin
人工智能·深度学习
乌恩大侠34 分钟前
【USRP】AI-RAN Sionna 5G NR 开发者套件
人工智能·5g
孤狼灬笑36 分钟前
机器学习十大经典算法解析与对比
人工智能·算法·机器学习
聚梦小课堂38 分钟前
ComfyUI Blog: ImagenWorld 发布:面向图像生成与编辑的真实世界基准测试数据集
人工智能·深度学习·图像生成·benchmark·imagenworld
星际棋手42 分钟前
【AI】一文说清楚神经网络、机器学习、专家系统
人工智能·神经网络·机器学习