【NLP 48、大语言模型的神秘力量 —— ICL:in context learning】

目录

一、ICL的优势

1.传统做法

2.ICL做法

二、ICL的发展

三、ICL成因的两种看法

[1.meta learning](#1.meta learning)

[2.Bayesian Inference](#2.Bayesian Inference)

四、ICL要点

[① 语言模型的规模](#① 语言模型的规模)

[② 提示词prompt中提供的examples数量和顺序](#② 提示词prompt中提供的examples数量和顺序)

[③ 提示词prompt的形式(format)](#③ 提示词prompt的形式(format))

[五、fine-tune VS ICL](#五、fine-tune VS ICL)


不要抓着枯叶哭泣,你要等待初春的芽

------ 25.3.26

一、ICL的优势

1.传统做法

任务定义 ------> 建立标注规范 ------> 标注人员学习标注规范 ------> 标注人员进行标注 ------> 对标注结果进行审核 ------> 使用标注数据训练模型 ------> 模型验证效果 ------> 模型实际预测

2.ICL做法

任务定义 ------> 模型实际预测

ICL方法如果完全成熟,意味着fine-tune范式的终结


二、ICL的发展

关于ICL的成因,目前学术界没有被广泛认可的解释,只有若干假说和一些表现分析。

在GPT3的论文中,z-s【zero-shot】,o-s【one-shot】,f-s【few-shot】都属于ICL


chain-of-thought思维链属于ICL


GPT3给出参考:在输入中加入至少一个样本,能大幅提升ICL效果

对于一个较大的模型而言,给出一个例子就可以显著的提升ICL的效果,给出Few-shot,准确性还会有所提升

对于一个较弱的模型而言,给出多少例子都不会显著提升ICL的效果


fine-tune会伤害ICL能力


精巧的提示词prompt设计有可能超过os、fs,可以通过提示词的改写进一步提高ICL的能力


Magical word

不给出思维链,而是在输入时多加入一句提示词,需要模型一步步思考:Let's think step by step

模型就可以像思维链一样主动发出思考,最终输出正确的结果


ICL时输入错误样本,不一定影响准确率

我们发现,用随机标签替换正确标签只会略微影响性能,这一趋势在几乎整个过程中是一致的


ICL可以压倒先验知识


三、ICL成因的两种看法

1.meta learning

大模型能在内部训练小型网络

2.Bayesian Inference

模型任务可以看作一个贝叶斯一样的多条件概率的组合,pretrain、prompt、example三者条件概率的组合,三者皆对于最终概率有影响


四、ICL要点

① 语言模型的规模

语言模型需要达到一定的规模

② 提示词prompt中提供的examples数量和顺序

给出的示例样本的数量和顺序也会影响模型效果的好坏

③ 提示词prompt的形式(format)

提示词的格式也十分重要,好的模型会根据你给出的格式回答你的问题


五、fine-tune VS ICL

相关推荐
数据皮皮侠29 分钟前
区县政府税务数据分析能力建设DID(2007-2025)
大数据·数据库·人工智能·信息可视化·微信开放平台
极小狐2 小时前
比 Cursor 更丝滑的 AI DevOps 编程智能体 - CodeRider-Kilo 正式发布!
运维·人工智能·devops
半臻(火白)2 小时前
Prompt-R1:重新定义AI交互的「精准沟通」范式
人工智能
菠菠萝宝3 小时前
【AI应用探索】-10- Cursor实战:小程序&APP - 下
人工智能·小程序·kotlin·notepad++·ai编程·cursor
连线Insight3 小时前
架构调整后,蚂蚁继续死磕医疗健康“硬骨头”
人工智能
小和尚同志3 小时前
十月份 AI Coding 实践!Qoder、CC、Codex 还是 iflow?
人工智能·aigc
keke.shengfengpolang3 小时前
中专旅游管理专业职业发展指南:从入门到精通的成长路径
人工智能·旅游
Danceful_YJ3 小时前
35.微调BERT
人工智能·深度学习·bert
ZPC82103 小时前
FPGA 部署ONNX
人工智能·python·算法·机器人
愿没error的x4 小时前
深度学习基础知识总结(一):深入理解卷积(Convolution)
人工智能·深度学习