【论文阅读】Dynamic Adversarial Patch for Evading Object Detection Models

一、介绍

这篇文章主要是针对目标检测框架的攻击,不同于现有的攻击方法,该论文主要的侧重点是考虑视角的变化问题,通过在车上布置多个显示器,利用视角动态选择哪一个显示器播放攻击内容,通过这种方法达到隐蔽与攻击的兼顾。

二、方法

文章的威胁模型假定攻击者对被攻击的模型有完全的了解,即白盒攻击。攻击分为两种情况:物体静止相机移动和物体移动相机静止。理想情况应该是有一个外部设备来实时确定被攻击者与攻击者的位置关系,但是这里为了简化实验,选择的是由实验者控制相机和攻击车辆的位置关系。

攻击的方法依然遵循原来的套路,采用叠加扰动并使模型性能下降的方法。这里选择的被攻击模型是YOLOV2,训练时手动标记显示器的位置并叠加图像,为了考虑到现实场景下的变化,作者在叠加图像的过程中随机给图像增加了亮度和对比度上的调整。

损失函数部分,考虑到目标检测模型实际上存在两个关键的指标:包围框和类别。这里作者设计了三种损失项:类别、物体以及交叉项。类别是只考虑类别损失,增大预测的类别与真实值之间的差异,同时作者还增加了一个语义类别,简单来说就是尽量不让车被误识别为自行车、卡车,而是被误识别为道路、树木等杂七杂八的东西。

物体项则是尽量降低目标检测结果的"置信度"这一项指标,当置信度过低时模型会认为该物体是错误的,从而直接过滤掉这一物体。

除此之外,作者也引入了平滑度的项,用于优化攻击的内容,减小瞩目性。

作者并没有使用显示器的NPS损失,最后的优化函数只包含两个损失项:

相关推荐
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
要努力啊啊啊9 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
北京地铁1号线11 小时前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型
Ailerx12 小时前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
张较瘦_17 小时前
[论文阅读] 人工智能 + 软件工程 | 软件架构中自然问题主动辅助研究:从挑战到解决方案
论文阅读·人工智能·软件工程
埃菲尔铁塔_CV算法19 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
有Li1 天前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
张较瘦_1 天前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1231 天前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷1 天前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习