【论文阅读】Dynamic Adversarial Patch for Evading Object Detection Models

一、介绍

这篇文章主要是针对目标检测框架的攻击,不同于现有的攻击方法,该论文主要的侧重点是考虑视角的变化问题,通过在车上布置多个显示器,利用视角动态选择哪一个显示器播放攻击内容,通过这种方法达到隐蔽与攻击的兼顾。

二、方法

文章的威胁模型假定攻击者对被攻击的模型有完全的了解,即白盒攻击。攻击分为两种情况:物体静止相机移动和物体移动相机静止。理想情况应该是有一个外部设备来实时确定被攻击者与攻击者的位置关系,但是这里为了简化实验,选择的是由实验者控制相机和攻击车辆的位置关系。

攻击的方法依然遵循原来的套路,采用叠加扰动并使模型性能下降的方法。这里选择的被攻击模型是YOLOV2,训练时手动标记显示器的位置并叠加图像,为了考虑到现实场景下的变化,作者在叠加图像的过程中随机给图像增加了亮度和对比度上的调整。

损失函数部分,考虑到目标检测模型实际上存在两个关键的指标:包围框和类别。这里作者设计了三种损失项:类别、物体以及交叉项。类别是只考虑类别损失,增大预测的类别与真实值之间的差异,同时作者还增加了一个语义类别,简单来说就是尽量不让车被误识别为自行车、卡车,而是被误识别为道路、树木等杂七杂八的东西。

物体项则是尽量降低目标检测结果的"置信度"这一项指标,当置信度过低时模型会认为该物体是错误的,从而直接过滤掉这一物体。

除此之外,作者也引入了平滑度的项,用于优化攻击的内容,减小瞩目性。

作者并没有使用显示器的NPS损失,最后的优化函数只包含两个损失项:

相关推荐
Francek Chen16 小时前
【深度学习计算机视觉】03:目标检测和边界框
人工智能·pytorch·深度学习·目标检测·计算机视觉·边界框
张较瘦_17 小时前
[论文阅读] 人工智能 + 软件工程 | 大模型破局跨平台测试!LLMRR让iOS/安卓/鸿蒙脚本无缝迁移
论文阅读·人工智能·ios
JoinApper1 天前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
Matrix_111 天前
论文阅读:VGGT Visual Geometry Grounded Transformer
论文阅读·计算摄影
CV-杨帆1 天前
论文阅读:ICLR 2021 BAG OF TRICKS FOR ADVERSARIAL TRAINING
论文阅读
一碗白开水一2 天前
【论文阅读】Far3D: Expanding the Horizon for Surround-view 3D Object Detection
论文阅读·人工智能·深度学习·算法·目标检测·计算机视觉·3d
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | TDD痛点破解:LLM自动生成测试骨架靠谱吗?静态分析+专家评审给出答案
论文阅读·人工智能·软件工程
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | 首个仓库级多任务调试数据集!RepoDebug揭秘LLM真实调试水平
论文阅读·人工智能
CV-杨帆2 天前
论文阅读:ACL 2023 MEETINGQA: Extractive Question-Answering on Meeting Transcripts
论文阅读
程序员柳2 天前
基于YOLOv8的车辆轨迹识别与目标检测研究分析软件源代码+详细文档
人工智能·yolo·目标检测