K-均值聚类

K-均值聚类是一种常用的无监督学习算法,用于将数据点划分为 K 个不同的类别。算法的步骤如下:

  1. 选择 K 个初始的聚类中心点。

  2. 将每个数据点分配到与其最近的聚类中心点所对应的类别。

  3. 重新计算每个类别的中心点。

  4. 重复步骤2和步骤3,直到聚类中心点不再发生变化,或者达到预定的迭代次数。

K-均值聚类的优点包括:

  1. 简单且容易实现。

  2. 对大型数据集具有较高的可伸缩性。

  3. 适用于均匀分布的数据,且对异常值不敏感。

K-均值聚类的缺点包括:

  1. 需要事先指定聚类数量 K,这对于某些数据集并不明显。

  2. 对初始聚类中心点的选择敏感,可能会导致不同的结果。

  3. 对于具有不规则形状或密度不均匀的数据集效果较差。

总的来说,K-均值聚类算法是一种常用且有效的聚类算法,但需要根据具体的数据集特点和应用场景来选择是否使用。

相关推荐
山烛14 分钟前
OpenCV图像形态学操作
图像处理·人工智能·python·opencv·计算机视觉·图像形态学
向左转, 向右走ˉ17 分钟前
神经网络显存占用分析:从原理到优化的实战指南
人工智能·深度学习·神经网络
掘金安东尼1 小时前
数据仓库现代化迁移到亚马逊 Redshift 完整指南
人工智能
掘金安东尼1 小时前
Amazon Polly :让文字开口说话的云端实践
人工智能·云原生
后端小肥肠1 小时前
从 0 到 1 用 Coze 做美食漫画,长尾流量 + 长期收益全拿下,小白可学!
人工智能·aigc·coze
AI_RSER1 小时前
遥感&机器学习入门实战教程|Sklearn 案例④ :多分类器对比(SVM / RF / kNN / Logistic...)
python·算法·机器学习·支持向量机·分类·sklearn
初学小刘2 小时前
机器学习中的聚类与集成算法:从基础到应用
算法·机器学习·聚类
机器之心2 小时前
好莱坞特效师展示AI生成的中文科幻大片,成本只有330元
人工智能·openai
Codebee2 小时前
用原生AI-IDE快速搞定OneCode视图注解:AI与注解驱动开发的完美结合
人工智能·低代码
aneasystone本尊2 小时前
GraphRAG 快速入门
人工智能