K-均值聚类

K-均值聚类是一种常用的无监督学习算法,用于将数据点划分为 K 个不同的类别。算法的步骤如下:

  1. 选择 K 个初始的聚类中心点。

  2. 将每个数据点分配到与其最近的聚类中心点所对应的类别。

  3. 重新计算每个类别的中心点。

  4. 重复步骤2和步骤3,直到聚类中心点不再发生变化,或者达到预定的迭代次数。

K-均值聚类的优点包括:

  1. 简单且容易实现。

  2. 对大型数据集具有较高的可伸缩性。

  3. 适用于均匀分布的数据,且对异常值不敏感。

K-均值聚类的缺点包括:

  1. 需要事先指定聚类数量 K,这对于某些数据集并不明显。

  2. 对初始聚类中心点的选择敏感,可能会导致不同的结果。

  3. 对于具有不规则形状或密度不均匀的数据集效果较差。

总的来说,K-均值聚类算法是一种常用且有效的聚类算法,但需要根据具体的数据集特点和应用场景来选择是否使用。

相关推荐
掘金一周几秒前
金石焕新程 >> 瓜分万元现金大奖征文活动即将回归 | 掘金一周 4.3
前端·人工智能·后端
白雪讲堂17 分钟前
AI搜索品牌曝光资料包(精准适配文心一言/Kimi/DeepSeek等场景)
大数据·人工智能·搜索引擎·ai·文心一言·deepseek
斯汤雷22 分钟前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
ejinxian29 分钟前
Spring AI Alibaba 快速开发生成式 Java AI 应用
java·人工智能·spring
葡萄成熟时_33 分钟前
【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)
人工智能·数据挖掘
机器之心1 小时前
一篇论文,看见百度广告推荐系统在大模型时代的革新
人工智能
机器之心1 小时前
视觉SSL终于追上了CLIP!Yann LeCun、谢赛宁等新作,逆转VQA任务固有认知
人工智能
赣州云智科技的技术铺子1 小时前
【一步步开发AI运动APP】六、运动计时计数能调用
人工智能·程序员