K-均值聚类

K-均值聚类是一种常用的无监督学习算法,用于将数据点划分为 K 个不同的类别。算法的步骤如下:

  1. 选择 K 个初始的聚类中心点。

  2. 将每个数据点分配到与其最近的聚类中心点所对应的类别。

  3. 重新计算每个类别的中心点。

  4. 重复步骤2和步骤3,直到聚类中心点不再发生变化,或者达到预定的迭代次数。

K-均值聚类的优点包括:

  1. 简单且容易实现。

  2. 对大型数据集具有较高的可伸缩性。

  3. 适用于均匀分布的数据,且对异常值不敏感。

K-均值聚类的缺点包括:

  1. 需要事先指定聚类数量 K,这对于某些数据集并不明显。

  2. 对初始聚类中心点的选择敏感,可能会导致不同的结果。

  3. 对于具有不规则形状或密度不均匀的数据集效果较差。

总的来说,K-均值聚类算法是一种常用且有效的聚类算法,但需要根据具体的数据集特点和应用场景来选择是否使用。

相关推荐
weixin_549808362 分钟前
以运营为核心的智能劳动力管理系统,破解连锁零售、制造业排班难题
大数据·人工智能·零售
struggle20253 分钟前
LinuxAgent开源程序是一款智能运维助手,通过接入 DeepSeek API 实现对 Linux 终端的自然语言控制,帮助用户更高效地进行系统运维工作
linux·运维·服务器·人工智能·自动化·deepseek
中关村科金28 分钟前
大模型训练平台:重构 AI 研发范式的智慧基建
人工智能·大模型·大模型训练平台
一点.点1 小时前
自动驾驶领域专业词汇(专业术语)整理
人工智能·自动驾驶·专业术语
烟锁池塘柳01 小时前
【深度学习】评估模型复杂度:GFLOPs与Params详解
人工智能·深度学习
果冻人工智能1 小时前
🧠5个AI工程师在第一次构建RAG时常犯的错误
人工智能
白熊1881 小时前
【计算机视觉】CV实战项目- DFace: 基于深度学习的高性能人脸识别
人工智能·深度学习·计算机视觉
layneyao1 小时前
自动驾驶L4级技术落地:特斯拉、Waymo与华为的路线之争
人工智能·华为·自动驾驶
訾博ZiBo1 小时前
AI日报 - 2025年04月30日
人工智能
毒果1 小时前
深度学习大模型: AI 阅卷替代人工阅卷
人工智能·深度学习