*************
c++
topic: 1572. 矩阵对角线元素的和 - 力扣(LeetCode)
*************
Look at the problems immediately.
|----------------------------------------------------------------------------|
| |
vector<vector<int>>& mat means mat is a two-dimension vector. Let's review the basic usage of the creating vector in c++.
make an integer.
cpp
int w = 13;
int t = 38;
make a one-dimension vector.
cpp
// 直接给定数组,数组的名字是自定义的
vector<int> w = {1, 3, 3, 8};
// 构造一个数组,包含13个元素,每个元素是 38
vector<int> t(13, 38);
make a two-dimension vector. And when talks about two-dimension vector, it is made of many one-dimension vctors.
cpp
// 一维数组
vecotr<int> w(13, 38);
输出:
38 38 38 38 38 38 38 38 38 38 38 38 38
// 二维数组就是规定了有几个一维数组、
vector<vector<int>> t(13, vector<int>(13, 38));
输出:
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
I like the basic usages of everything so much. Making full usage of the things keeps claen. Many people want to learn too much skills, which I think donnot have to. Keep things simple.
I think when looking at the mat, getting the size is always first.
cpp
class Solution {
public:
int diagonalSum(vector<vector<int>>& mat) {
int n = mat.size(); // get the size of mat
int sum = 0;
}
};
mat[a][b] means the element lies in line a column b.
cpp
class Solution {
public:
int diagonalSum(vector<vector<int>>& mat) {
int n = mat.size(); // get the size of mat
int sum = 0;
for (int i = 0; i < n; i++)
{
sum = sum + mat[i][i];
sum = sum + mat[i][n - 1 - i];
}
return sum;
}
};
|----------------------------------------------------------------------------|
| |
This problen is easy but sumething wrong. Soon I find the key point. 5 is really a special one. It lies in both main diagonal and counter diagonal.
|----------------------------------------------------------------------------|
| |
just minus it.
cpp
class Solution {
public:
int diagonalSum(vector<vector<int>>& mat) {
int n = mat.size(); // get the size of mat
int sum = 0;
for (int i = 0; i < n; i++)
{
sum = sum + mat[i][i];
sum = sum + mat[i][n - 1 - i];
}
// 如果奇数个元素,那么得减掉正中心的元素,因为他被计算了两遍
if (n % 2 == 1)
{
sum = sum - mat[(n - 1) / 2][(n - 1) / 2];
}
return sum;
}
};
|----------------------------------------------------------------------------|
| |