矩阵对角线元素的和 - 简单

*************

c++

topic: 1572. 矩阵对角线元素的和 - 力扣(LeetCode)

*************

Look at the problems immediately.

|----------------------------------------------------------------------------|
| |

vector<vector<int>>& mat means mat is a two-dimension vector. Let's review the basic usage of the creating vector in c++.

make an integer.

cpp 复制代码
int w = 13;
int t = 38;

make a one-dimension vector.

cpp 复制代码
// 直接给定数组,数组的名字是自定义的
vector<int> w = {1, 3, 3, 8};

// 构造一个数组,包含13个元素,每个元素是 38
vector<int> t(13, 38);

make a two-dimension vector. And when talks about two-dimension vector, it is made of many one-dimension vctors.

cpp 复制代码
// 一维数组
vecotr<int> w(13, 38);

输出:
38 38 38 38 38 38 38 38 38 38 38 38 38


// 二维数组就是规定了有几个一维数组、
vector<vector<int>> t(13, vector<int>(13, 38));

输出:
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38
38 38 38 38 38 38 38 38 38 38 38 38 38

I like the basic usages of everything so much. Making full usage of the things keeps claen. Many people want to learn too much skills, which I think donnot have to. Keep things simple.

I think when looking at the mat, getting the size is always first.

cpp 复制代码
class Solution {
public:
    int diagonalSum(vector<vector<int>>& mat) {
        
        int n = mat.size(); // get the size of mat
        int sum = 0;
    }
};

mat[a][b] means the element lies in line a column b.

cpp 复制代码
class Solution {
public:
    int diagonalSum(vector<vector<int>>& mat) {
        
        int n = mat.size(); // get the size of mat
        int sum = 0;

        for (int i = 0; i < n; i++)
        {
            sum = sum + mat[i][i];
            sum = sum + mat[i][n - 1 - i];
        }

        return sum;
    }
};

|----------------------------------------------------------------------------|
| |

This problen is easy but sumething wrong. Soon I find the key point. 5 is really a special one. It lies in both main diagonal and counter diagonal.

|----------------------------------------------------------------------------|
| |

just minus it.

cpp 复制代码
class Solution {
public:
    int diagonalSum(vector<vector<int>>& mat) {
        
        int n = mat.size(); // get the size of mat
        int sum = 0;

        for (int i = 0; i < n; i++)
        {
            sum = sum + mat[i][i];
            sum = sum + mat[i][n - 1 - i];
        }

        // 如果奇数个元素,那么得减掉正中心的元素,因为他被计算了两遍
        if (n % 2 == 1)
        {
            sum = sum - mat[(n - 1) / 2][(n - 1) / 2];
        }

        return sum;
    }
};

|----------------------------------------------------------------------------|
| |

相关推荐
淘小白_TXB21968 小时前
头条号矩阵运营经验访谈记录
线性代数·矩阵
智者知已应修善业1 天前
【矩阵找最大小所在位置】2022-11-13
c语言·c++·经验分享·笔记·算法·矩阵
semantist@语校1 天前
第二十篇|SAMU教育学院的教育数据剖析:制度阈值、能力矩阵与升学网络
大数据·数据库·人工智能·百度·语言模型·矩阵·prompt
deephub1 天前
机器人逆运动学进阶:李代数、矩阵指数与旋转流形计算
人工智能·机器学习·矩阵·机器人·李群李代数
时空无限2 天前
说说transformer 中的掩码矩阵以及为什么能掩盖住词语
人工智能·矩阵·transformer
hn小菜鸡2 天前
LeetCode 3643.垂直翻转子矩阵
算法·leetcode·矩阵
张晓~183399481212 天前
短视频矩阵源码-视频剪辑+AI智能体开发接入技术分享
c语言·c++·人工智能·矩阵·c#·php·音视频
The_Killer.2 天前
格密码--从FFT到NTT(附源码)
学习·线性代数·密码学·格密码
小李独爱秋2 天前
特征值优化:机器学习中的数学基石
人工智能·python·线性代数·机器学习·数学建模
听情歌落俗2 天前
MATLAB3-1变量-台大郭彦甫
开发语言·笔记·算法·matlab·矩阵