基于神经网络的肾脏疾病预测模型

构建一个基于神经网络的肾脏疾病预测模型

1. 数据预处理

  • 加载数据 :读取 kidney_disease.csv 文件,加载患者医疗数据。
  • 删除冗余特征 :移除与预测目标无关的列(如 al, su 等),保留关键特征(如年龄、血压、血糖等)。
  • 处理缺失值 :用 np.nan_to_num 将缺失值(NaN)替换为0,但此方法可能不适用于分类特征(例如"是否有糖尿病"列中0可能代表"否")。

2. 特征工程

  • 标签定义 :假设数据最后一列(第8列)是分类标签(如 classification),标记患者是否患病(二分类问题)。
  • 分类变量编码 :对分类特征(如 dm(糖尿病)、cad(冠心病)、appet(食欲))进行独热编码(One-Hot Encoding),将其转换为数值形式供模型处理。

3. 数据标准化与分割

  • 标准化 :使用 StandardScaler 对数值型特征进行标准化(均值0,方差1),消除量纲差异。
  • 数据分割:按8:2比例划分训练集和测试集,确保模型评估的客观性。

4. 神经网络建模

  • 模型结构
    • 输入层:11个输入节点(对应特征数量)。
    • 隐藏层:2层全连接层,每层6个神经元,激活函数为ReLU。
    • 输出层:1个神经元,激活函数为Sigmoid,输出患病概率(0~1)。
  • 训练配置
    • 损失函数 :二元交叉熵(binary_crossentropy),适用于二分类问题。
    • 优化器:Adam,自适应调整学习率。
    • 批次训练:每批次7个样本,共训练20轮(epochs)。

5. 模型评估

  • 预测与阈值处理:对测试集预测概率大于0.5的样本判定为患病。
  • 性能指标
    • 混淆矩阵:计算真阳性、假阳性等分类结果。

    • 准确率:统计模型正确预测的比例。

      导入必要库

      import pandas as pd
      from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import StandardScaler
      from sklearn.metrics import confusion_matrix, accuracy_score
      from keras.models import Sequential
      from keras.layers import Dense

      数据预处理

      df = pd.read_csv('kidney_disease.csv')
      to_drop = ['al','su','rbc','pc','pcc','ba','bgr','pcv','sod','pot','bu','wc','rc','htn','pe','ane']
      df.drop(to_drop, axis=1, inplace=True)
      df = df.dropna() # 删除缺失值

      分割特征与标签

      X = df.drop(['id', 'classification'], axis=1) # 假设标签列名是'classification'
      y = df['classification'].apply(lambda x: 1 if x.lower().strip() == 'ckd' else 0) # 处理标签格式

      分类列处理

      categorical_cols = ['dm', 'cad', 'appet']
      for col in categorical_cols:
      # 清洗字符串数据(统一小写并去除空格)
      X[col] = X[col].astype(str).str.strip().str.lower()
      # 生成哑变量
      dummies = pd.get_dummies(X[col], prefix=col, drop_first=True)
      X = pd.concat([X, dummies], axis=1)
      X = X.drop(categorical_cols, axis=1)

      数据标准化

      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1, stratify=y) # 添加分层抽样
      sc = StandardScaler()
      X_train = sc.fit_transform(X_train)
      X_test = sc.transform(X_test)

      模型构建

      classifier = Sequential()
      classifier.add(Dense(units=6, activation='relu', input_dim=X_train.shape[1], kernel_initializer='he_uniform')) # 更合适的初始化方法
      classifier.add(Dense(units=6, activation='relu', kernel_initializer='he_uniform'))
      classifier.add(Dense(units=1, activation='sigmoid', kernel_initializer='he_uniform'))
      classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

      训练

      classifier.fit(X_train, y_train, batch_size=7, epochs=20)

      评估

      y_pred = classifier.predict(X_test) > 0.5
      print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
      print("Accuracy:", accuracy_score(y_test, y_pred))

相关推荐
لا معنى له9 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI11 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.13 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight13 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha13 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir13 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王14 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室15 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛1115 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI15 小时前
RAG系列(一) 架构基础与原理
人工智能·架构