机器学习之回归算法

《数据挖掘技术与应用》

【实验名称】 实验:回归算法

【实验目的】

1.了解回归算法理论基础

2.平台实现算法

  1. 编程实现分类算法

【实验原理】

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。

【实验环境】

OS:Ubuntu16.04

PyCharm: 2017.3

Mining

【实验步骤】

本实验中我们将对波士顿房价的数据集进行回归算法训练:在机器学习章节中我们已经创建过最简单的回归模型,我们在此回顾一下:

LinearRegression 会调用 fit 方法来拟合数组 X, y,并且将线性模型的系数 存储在其成员变量 coef_ 中:

from sklearn import linear_model

reg = linear_model.LinearRegression()

print(reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2]))

print(reg.coef_)

print(reg.predict([[1, 2]]))

题目一:使用线性和多项式回归算法进行房价预测

STEP1:加载波士顿房价数据集,并且将数据集分割为训练集和测试集。

STEP2:创建线性回归模型和多项式回归模型并进行训练,问题一:补充代码,创建多项式回归模型并进行训练,在这里我们已经对线性回归模型比较熟悉了,但是多项式回归模型如何创建?

我们已知线性回归和多项式线性回归的模型如下:

仔细观察这两个模型会发现,我们可以想象创造一个新的变量:

有了这些重新标记的数据,我们可以将问题写成:

因此我们可以将原始数据转换后再使用线性回归训练构成多项式回归模型。

提示:使用PolynomialFeatures方法将数据进行转换

STEP3:使用模型进行预测并计算其mse。

题目二:使用Ridge回归算法进行房价预测

线性回归的主要问题是对异常值敏感,在真实世界的数据收集过程中,经常会遇到错误的度量结果,而线性回归使用的普通最小二乘法,其目标是使平方误差最小化,这时,由于异常值误差的绝对值很大,会引起问题,破坏模型。

Ridge 回归通过对系数的大小施加惩罚来解决普通最小二乘法的一些问题,请自行了解Ridge 回归算法,以及与线性算法的区别。

STEP1:加载数据集,并且将数据集分割为训练集和测试集。

STEP2:创建Ridge回归模型,请了解sklearn中Ridge模型的alpha参数,参考:http://sklearn.apachecn.org/cn/0.19.0/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge。

STEP3:问题一:寻找Ridge最优参数alpha,补充代码创建参数优化器GridSearchCV,将参数model,param_grid传入,GridSearchCV是为了寻找出model的alpha最优参数,请了解sklearn中GridSearchCV的model,param_grid参数,参考:http://sklearn.apachecn.org/cn/0.19.0/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV。

STEP4:使用最优参数的Ridge模型进行预测,计算其MSE,并从图像中观察预测值是否准确。

相关推荐
量子位5 分钟前
苹果炮轰推理模型全是假思考!4 个游戏戳破神话,o3/DeepSeek 高难度全崩溃
人工智能·deepseek
黑鹿0228 分钟前
机器学习基础(四) 决策树
人工智能·决策树·机器学习
Fxrain9 分钟前
[深度学习]搭建开发平台及Tensor基础
人工智能·深度学习
szxinmai主板定制专家12 分钟前
【飞腾AI加固服务器】全国产化飞腾+昇腾310+PCIe Switch的AI大模型服务器解决方案
运维·服务器·arm开发·人工智能·fpga开发
laocui116 分钟前
Σ∆ 数字滤波
人工智能·算法
molunnnn1 小时前
day 18进行聚类,进而推断出每个簇的实际含义
机器学习·数据挖掘·聚类
Matrix_111 小时前
论文阅读:Matting by Generation
论文阅读·人工智能·计算摄影
Humbunklung1 小时前
机器学习算法分类
算法·机器学习·分类
一叶知秋秋2 小时前
python学习day39
人工智能·深度学习·学习
Ai多利2 小时前
深度学习登上Nature子刊!特征选择创新思路
人工智能·算法·计算机视觉·多模态·特征选择