Browser-use:基于 Python 的智能浏览器自动化 AI 工具调研与实战

Browser-use:基于 Python 的智能浏览器自动化 AI 工具调研与实战

一、概述

Browser-use 是一个旨在将 AI "智能体"(Agents)与真实浏览器进行交互的 Python 库,可以轻松实现浏览器自动化。在配合 LLM(如 GPT 系列)使用时,浏览器-use 能够让你的智能体发起对网页的访问、操作页面元素、收集信息、执行脚本等,从而扩展 AI 应用的落地场景。

目前 Browser-use 最低需要 Python 3.11 及以上,才能正常使用其封装的 Playwright 功能。

1. 技术栈:

  • LangChain(AI Agent框架)
  • Playwright(浏览器自动化)
  • dotenv(环境变量 key)
  • 异步I/O架构

2. 流程图

graph TD A[用户任务] --> B[LLM 解析] B --> C[Agent 决策/规划] C --> D[浏览器动作] C --> E[数据提取页面信息] D --> F[Playwright 调用] F --> H[浏览器实例] H --> C E --> G[模型处理] G --> I[(结构化结果输出)]

browser-use:语言模型 -> 决策/控制 -> 浏览器执行 -> 数据回传 -> 模型后处理


二、核心特性

1. 简单的 Agent 接口

通过 Agent 类即可快速创建带浏览器交互能力的智能体,赋能 LLM 与网页之间的复杂操作。

python 复制代码
agent = Agent(
        task="打开 https://cn.vuejs.org/guide/essentials/computed,获取页面里所有的 h2 标签文本及所有的 a 标签文本(以及它的 href)",
        llm=llm,
    )
result = await agent.run()

2. 多语言模型支持

可轻松集成 LangChain 提供的各类 LLM(如 OpenAI、Anthropic、Cohere 等)进行高级任务管理。

模型 所属/类型
GPT-4o OpenAI
Claude Anthropic
Azure Azure OpenAI
Gemini Google Generative AI
DeepSeek-V3 DeepSeek
DeepSeek-R1 DeepSeek
Ollama 本地模型 (需安装 Ollama)

3. 基于 Playwright

默认使用 Playwright 进行浏览器的无头启动、页面操作和渲染控制;对常见网页交互场景提供友好的抽象。

4. 云端版 & 本地版

除了本地安装运行外,Browser-use 也提供托管版本,可以直接在云端执行,无需配置本地环境。


三、安装与环境配置

1. Python 版本

  • 需要 Python 3.11 或更高版本。
  • 推荐在独立虚拟环境(venv)或管理工具(如 uv)中配置环境。
1.1. 推荐使用 pyenv 管理 python

Github:github.com/pyenv/pyenv

shell 复制代码
brew install pyenv
pyenv install 3.11.9
shell 复制代码
# pyenv 根目录
export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"

# 初始化
eval "$(pyenv init -)"

2. 安装方法

2.1. 安装 browser-use
powershell 复制代码
pip3 install browser-use
2.2. 安装 Playwright
powershell 复制代码
playwright install
  • 此操作会自动下载 Chromium 无头浏览器,用于后续的浏览器自动化。
2.3. 配置 LLM API Keys(可选)
  • 在 .env 文件中填写相应的 OPENAI_API_KEY=、ANTHROPIC_API_KEY= 等 Key。
plain 复制代码
OPENAI_API_KEY=sk-xxxxxxx
  • 如果使用其他 LLM,需要参考 LangChain 文档或对应服务提供的说明进行配置。

四、基础配置

1. Agent

1.1. Agent 参数
参数名称 类型 默认值 说明
task str 代理需要执行的任务描述。(必传)
llm BaseChatModel (LangChain Model) 主语言模型,执行对话和工具调用。(必传)
controller Controller 实例 默认 Controller 自定义函数/工具调用的注册表
use_vision bool True 是否启用视觉能力(截图+分析)。如模型支持图像输入,可显著提高网页理解;也会产生额外 token 成本。 Deepseek 需要设置为 False
save_conversation_path str 若指定,则会将对话历史保存在该路径下,用于调试或审计。
system_prompt_class type (自定义 System Prompt 类) 默认Prompt 自定义系统提示词逻辑
browser Browser (Browser-use 实例) 重用已创建的 Browser 实例;若不提供,则 Agent 每次 run() 时会自动创建并关闭新的浏览器。
browser_context BrowserContext (Playwright 实例) 使用已有的浏览器上下文 (Context)。适合需要维护持久会话 (cookies/localStorage) 的场景。
max_steps int 100 允许 Agent 执行的最大步骤数,防止死循环或无限操作。
planner_llm BaseChatModel __ 规划用语言模型,与主 LLM 分开;可用较小/便宜模型处理高层策略。
use_vision_for_planner bool True Planner 是否能使用视觉功能(若主 LLM 已开启视觉,这里可独立关闭以节省资源)。
planner_interval int 1 Planner 模型执行间隔。即每多少步调用一次 Planner 作重新规划。
message_context str 额外的任务/上下文信息,辅助 LLM 更好理解或执行任务。 + 03/28 文档已删除字段
initial_actions list[dict] 初始化时要执行的动作列表(无需经 LLM 调用),格式为 {action_name: {...}}。
max_actions_per_step int 10 每个步骤里可执行的最大动作数,用于控制 Agent 过度频繁操作。
max_failures int 3 允许 Agent 失败的最大次数,超过则停止任务。
retry_delay int (秒) 10 当遇到限流 (rate limit) 或可重试的错误时,等待多少秒后再次尝试。
generate_gif bool 或 str (路径) False 是否录制浏览器过程生成 GIF。为 True 时自动生成随机文件名;为字符串时将 GIF 存储到该路径。
1.2. Agent 执行流程图
graph A[任务 Task 指令] --> B[LLM 理解任务意图] B --> C[生成当前行动方案] C --> D[浏览器执行] D --> E[反馈执行结果] E --> F[LLM 再次分析 是否完成目标] F -->|完成| G[返回结果] F -->|未完成| C

2. Browser 配置

Browser-use 提供两个主要配置类:

  • BrowserConfig:控制浏览器整体行为
  • BrowserContextConfig:控制单个上下文(浏览器标签页/会话)的行为

官方推荐:「1 个 Agent 对应 1 个 Browser 和 1 个 Context」,以增强稳定性和开发体验。

2.1. BrowserConfig
python 复制代码
from browser_use import BrowserConfig

config = BrowserConfig(
    headless=False,
    disable_security=True
)
browser = Browser(config=config)
参数名称 类型 默认值 说明
headless bool False 是否启用无头模式(不显示 UI)
disable_security bool True 是否禁用浏览器安全功能(如跨域限制)
extra_browser_args list[str] [] 启动浏览器时的额外参数
proxy dict / str 设置代理,遵循 Playwright 规范
new_context_config BrowserContextConfig 新建 默认的新上下文配置
wss_url str WebSocket 连接地址,连接云端浏览器服务(如 browserbase、steel.dev)
cdp_url str Chrome DevTools 协议地址,连接本地 Chrome 实例
chrome_instance_path str 指定本地 Chrome 安装路径,保留登录状态和 Cookie 关闭所有正在运行的 Chrome
2.2. BrowserContextConfig 配置
python 复制代码
from browser_use.browser.context import BrowserContextConfig

config = BrowserContextConfig(
    cookies_file="path/to/cookies.json",
    wait_for_network_idle_page_load_time=3.0,
    browser_window_size={'width': 1280, 'height': 1100},
    locale='en-US',
    user_agent='Mozilla/5.0...',
    highlight_elements=True,
    viewport_expansion=500,
    allowed_domains=['google.com', 'wikipedia.org'],
)
参数名称 类型 默认值 说明
minimum_wait_page_load_time float 0.5 捕获网页状态前的最小等待时间
wait_for_network_idle_page_load_time float 1.0 等待网络空闲时间,可提高到 3-5s 以兼容慢速网站
maximum_wait_page_load_time float 5.0 页面加载的最长等待时间
browser_window_size dict {1280, 1100} 浏览器窗口大小,适配大多数 UI 和横幅
locale str 设置语言/地区(如 zh-CN, en-GB),影响语言头和格式
user_agent str 自定义浏览器 User-Agent
highlight_elements bool True 是否高亮交互元素(调试用)
viewport_expansion int 500 页面内容扩展范围(像素),影响哪些元素被 LLM 看到。-1 为全部,0 为仅视口内
allowed_domains list[str] 限制代理访问的域名,若为空则不限制
cookies_file str 加载持久化 Cookie 文件
save_recording_path str 保存操作录像的目录路径
trace_path str 保存 Trace 文件目录,命名为 {trace_path}/{context_id}.zip

3. 输出内容

3.1. History 方法
方法 说明
urls() 访问过的 URL 列表
screenshots() 截图路径列表
action_names() 执行的动作名称
extracted_content() 抽取到的内容
errors() 执行中出现的错误
model_actions() 所有动作及参数
final_result() 最终结果
is_done() 是否成功完成
has_errors() 是否有错误
model_thoughts() LLM 推理过程
action_results() 所有动作结果
3.2. 示例
python 复制代码
from pydantic import BaseModel
from typing import List
from dotenv import load_dotenv
from browser_use import Agent, Controller
from langchain_openai import ChatOpenAI
import asyncio

# Define the output format as a Pydantic model
class Post(BaseModel):
	post_title: str
	post_url: str


class Posts(BaseModel):
	posts: List[Post]


load_dotenv()
controller = Controller(output_model=Posts)


async def main():
	task = '从掘金获取 Vue / React / AI 相关文章'
	model = ChatOpenAI(model='gpt-4o')
	agent = Agent(task=task, llm=model, controller=controller)
	history = await agent.run()
	result = history.final_result()
	print('result--->', result)
	print('history.urls()--->', history.urls())
	# print('history.screenshots()--->', history.screenshots())
	print('history.action_names()--->', history.action_names())
	print('history.extracted_content()--->', history.extracted_content())
	print('history.errors()--->', history.errors())
	print('history.model_actions()--->', history.model_actions())
	print('history.is_done()--->', history.is_done())
	print('history.has_errors()--->', history.has_errors())
	print('history.model_thoughts()--->', history.model_thoughts())
	print('history.action_results()--->', history.action_results())
	if result:
		parsed: Posts = Posts.model_validate_json(result)

		for post in parsed.posts:
			print('\n--------------------------------')
			print(f'Title:            {post.post_title}')
			print(f'URL:              {post.post_url}')
	else:
		print('No result')


if __name__ == '__main__':
	asyncio.run(main())
python 复制代码
result---> {"posts": [{"post_title": "vue3.5+deepseek+arco+markdown\u642d\u5efaweb\u7248\u6d41\u5f0f\u8f93\u51faAI\u6a21\u677f", "post_url": "https://juejin.cn/post/7486369696738017321"}, {"post_title": "\ud83d\ude80\ud83d\ude80\ud83d\ude80\u5c24\u96e8\u6eaa\u8fde\u53d1\u4e24\u6761\u63a8\u7279\u5899\u88c2\u63a8\u8350\u7684\u8fd9\u4e9b\u5e93\u4f60\u4e00\u5b9a\u8981\u77e5\u9053\uff01", "post_url": "https://juejin.cn/post/7484131071569772595"}, {"post_title": "\u524d\u7aef\u4f6c\u4eec\uff01\u584c\u623f\u4e86\uff01\u7528\u8fc7Element-Plus\u7684\u8fdb\u6765~", "post_url": "https://juejin.cn/post/7485966905418760227"}, {"post_title": "\u548c\u540e\u7aef\u5927\u6218\u4e09\u767e\u56de\u5408\u540e\uff0c\u5351\u5fae\u524d\u7aef\u8fd8\u662f\u9009\u62e9\u4e86\u81ea\u5df1\u5199excel\u5bfc\u51fa", "post_url": "https://juejin.cn/post/7447368539936587776"}, {"post_title": "\u4ece DeepSeek \u770b25\u5e74\u524d\u7aef\u7684\u4e00\u4e2a\u5c0f\u8d8b\u52bf", "post_url": "https://juejin.cn/post/7468323178931879972"}, {"post_title": "\ud83d\ude80\ud83d\ude80\ud83d\ude80\u5c24\u96e8\u6eaa\u8fde\u53d1\u4e24\u6761\u63a8\u7279\u5899\u88c2\u63a8\u8350\u7684\u8fd9\u4e9b\u5e93\u4f60\u4e00\u5b9a\u8981\u77e5\u9053\uff01", "post_url": "https://juejin.cn/post/7484131071569772595"}, {"post_title": "\u524d\u7aef\u4f6c\u4eec\uff01\u584c\u623f\u4e86\uff01\u7528\u8fc7Element-Plus\u7684\u8fdb\u6765~", "post_url": "https://juejin.cn/post/7485966905418760227"}, {"post_title": "\u548c\u540e\u7aef\u5927\u6218\u4e09\u767e\u56de\u5408\u540e\uff0c\u5351\u5fae\u524d\u7aef\u8fd8\u662f\u9009\u62e9\u4e86\u81ea\u5df1\u5199excel\u5bfc\u51fa", "post_url": "https://juejin.cn/post/7447368539936587776"}, {"post_title": "vue3.5+deepseek+arco+markdown\u642d\u5efaweb\u7248\u6d41\u5f0f\u8f93\u51faAI\u6a21\u677f", "post_url": "https://juejin.cn/post/7486369696738017321"}, {"post_title": "\u4ece DeepSeek \u770b25\u5e74\u524d\u7aef\u7684\u4e00\u4e2a\u5c0f\u8d8b\u52bf", "post_url": "https://juejin.cn/post/7468323178931879972"}, {"post_title": "\u6709\u4e86Trae\uff0c\u4eba\u4eba\u90fd\u662f\u7a0b\u5e8f\u5458\u7684\u65f6\u4ee3\u6765\u4e86", "post_url": "https://juejin.cn/post/7463397212120973375"}, {"post_title": "\u6b63\u5f0f\u5ba3\u6218\uff0cDeepSeek \u9876\u5f97\u4f4f\u5417\uff1f", "post_url": "https://juejin.cn/post/7464848482987704329"}, {"post_title": "\u7528 DeepSeek \u6253\u9020\u4f60\u7684\u8d85\u5f3a\u4ee3\u7801\u52a9\u624b", "post_url": "https://juejin.cn/post/7454888708588945443"}, {"post_title": "\u521a\u521a\uff0cDeepSeek \u89e3\u7b54\u4e86\u56f0\u6270\u6211\u4e94\u5e74\u7684\u6280\u672f\u95ee\u9898\u3002\u65f6\u4ee3\u786e\u5b9e\u53d8\u4e86\uff01", "post_url": "https://juejin.cn/post/7472248441454018575"}, {"post_title": "\u653e\u5f03\u6ca1\u7528\u7684\u672c\u5730\u90e8\u7f72\u6b8b\u8840\u7248DeepSeek\u5427\uff0c\u6559\u4f60\u5982\u4f55\u767d\u5ad6\u6ee1\u8840\u7248DeepSeek", "post_url": "https://juejin.cn/post/7466832084486914083"}]}
history.urls()---> ['about:blank', 'https://juejin.cn/', 'https://juejin.cn/', 'https://juejin.cn/', 'https://juejin.cn/', 'https://juejin.cn/', 'https://juejin.cn/', 'https://juejin.cn/']
history.action_names()---> ['go_to_url', 'input_text', 'click_element', 'extract_content', 'input_text', 'click_element', 'extract_content', 'input_text', 'click_element', 'extract_content', 'done']
history.extracted_content()---> ['🔗  Navigated to https://juejin.cn', '⌨️  Input Vue into index 11', '🖱️  Clicked button with index 11: ', '📄  Extracted from page\n: ```json\n{\n  "top_5_vue_articles": [\n    {\n      "post_title": "vue3.5+deepseek+arco+markdown搭建web版流式输出AI模板",\n      "post_url": "https://juejin.cn/post/7486369696738017321"\n    },\n    {\n      "post_title": "🚀🚀🚀尤雨溪连发两条推特墙裂推荐的这些库你一定要知道!",\n      "post_url": "https://juejin.cn/post/7484131071569772595"\n    },\n    {\n      "post_title": "前端佬们!塌房了!用过Element-Plus的进来~",\n      "post_url": "https://juejin.cn/post/7485966905418760227"\n    },\n    {\n      "post_title": "和后端大战三百回合后,卑微前端还是选择了自己写excel导出",\n      "post_url": "https://juejin.cn/post/7447368539936587776"\n    },\n    {\n      "post_title": "从 DeepSeek 看25年前端的一个小趋势",\n      "post_url": "https://juejin.cn/post/7468323178931879972"\n    }\n  ]\n}\n```\n', '⌨️  Input React into index 11', '🖱️  Clicked button with index 11: ', '📄  Extracted from page\n: ```json\n{\n  "top_5_react_articles": [\n    {\n      "post_title": "🚀🚀🚀尤雨溪连发两条推特墙裂推荐的这些库你一定要知道!",\n      "post_url": "/post/7484131071569772595"\n    },\n    {\n      "post_title": "前端佬们!塌房了!用过Element-Plus的进来~",\n      "post_url": "/post/7485966905418760227"\n    },\n    {\n      "post_title": "和后端大战三百回合后,卑微前端还是选择了自己写excel导出",\n      "post_url": "/post/7447368539936587776"\n    },\n    {\n      "post_title": "vue3.5+deepseek+arco+markdown搭建web版流式输出AI模板",\n      "post_url": "/post/7486369696738017321"\n    },\n    {\n      "post_title": "从 DeepSeek 看25年前端的一个小趋势",\n      "post_url": "/post/7468323178931879972"\n    }\n  ]\n}\n```\n', '⌨️  Input AI into index 11', '🖱️  Clicked button with index 11: ', '📄  Extracted from page\n: ```json\n{\n  "top_5_ai_articles": [\n    {\n      "post_title": "有了Trae,人人都是程序员的时代来了",\n      "post_url": "/post/7463397212120973375"\n    },\n    {\n      "post_title": "正式宣战,DeepSeek 顶得住吗?",\n      "post_url": "/post/7464848482987704329"\n    },\n    {\n      "post_title": "用 DeepSeek 打造你的超强代码助手",\n      "post_url": "/post/7454888708588945443"\n    },\n    {\n      "post_title": "刚刚,DeepSeek 解答了困扰我五年的技术问题。时代确实变了!",\n      "post_url": "/post/7472248441454018575"\n    },\n    {\n      "post_title": "放弃没用的本地部署残血版DeepSeek吧,教你如何白嫖满血版DeepSeek",\n      "post_url": "/post/7466832084486914083"\n    }\n  ]\n}\n```\n', '{"posts": [{"post_title": "vue3.5+deepseek+arco+markdown\\u642d\\u5efaweb\\u7248\\u6d41\\u5f0f\\u8f93\\u51faAI\\u6a21\\u677f", "post_url": "https://juejin.cn/post/7486369696738017321"}, {"post_title": "\\ud83d\\ude80\\ud83d\\ude80\\ud83d\\ude80\\u5c24\\u96e8\\u6eaa\\u8fde\\u53d1\\u4e24\\u6761\\u63a8\\u7279\\u5899\\u88c2\\u63a8\\u8350\\u7684\\u8fd9\\u4e9b\\u5e93\\u4f60\\u4e00\\u5b9a\\u8981\\u77e5\\u9053\\uff01", "post_url": "https://juejin.cn/post/7484131071569772595"}, {"post_title": "\\u524d\\u7aef\\u4f6c\\u4eec\\uff01\\u584c\\u623f\\u4e86\\uff01\\u7528\\u8fc7Element-Plus\\u7684\\u8fdb\\u6765~", "post_url": "https://juejin.cn/post/7485966905418760227"}, {"post_title": "\\u548c\\u540e\\u7aef\\u5927\\u6218\\u4e09\\u767e\\u56de\\u5408\\u540e\\uff0c\\u5351\\u5fae\\u524d\\u7aef\\u8fd8\\u662f\\u9009\\u62e9\\u4e86\\u81ea\\u5df1\\u5199excel\\u5bfc\\u51fa", "post_url": "https://juejin.cn/post/7447368539936587776"}, {"post_title": "\\u4ece DeepSeek \\u770b25\\u5e74\\u524d\\u7aef\\u7684\\u4e00\\u4e2a\\u5c0f\\u8d8b\\u52bf", "post_url": "https://juejin.cn/post/7468323178931879972"}, {"post_title": "\\ud83d\\ude80\\ud83d\\ude80\\ud83d\\ude80\\u5c24\\u96e8\\u6eaa\\u8fde\\u53d1\\u4e24\\u6761\\u63a8\\u7279\\u5899\\u88c2\\u63a8\\u8350\\u7684\\u8fd9\\u4e9b\\u5e93\\u4f60\\u4e00\\u5b9a\\u8981\\u77e5\\u9053\\uff01", "post_url": "https://juejin.cn/post/7484131071569772595"}, {"post_title": "\\u524d\\u7aef\\u4f6c\\u4eec\\uff01\\u584c\\u623f\\u4e86\\uff01\\u7528\\u8fc7Element-Plus\\u7684\\u8fdb\\u6765~", "post_url": "https://juejin.cn/post/7485966905418760227"}, {"post_title": "\\u548c\\u540e\\u7aef\\u5927\\u6218\\u4e09\\u767e\\u56de\\u5408\\u540e\\uff0c\\u5351\\u5fae\\u524d\\u7aef\\u8fd8\\u662f\\u9009\\u62e9\\u4e86\\u81ea\\u5df1\\u5199excel\\u5bfc\\u51fa", "post_url": "https://juejin.cn/post/7447368539936587776"}, {"post_title": "vue3.5+deepseek+arco+markdown\\u642d\\u5efaweb\\u7248\\u6d41\\u5f0f\\u8f93\\u51faAI\\u6a21\\u677f", "post_url": "https://juejin.cn/post/7486369696738017321"}, {"post_title": "\\u4ece DeepSeek \\u770b25\\u5e74\\u524d\\u7aef\\u7684\\u4e00\\u4e2a\\u5c0f\\u8d8b\\u52bf", "post_url": "https://juejin.cn/post/7468323178931879972"}, {"post_title": "\\u6709\\u4e86Trae\\uff0c\\u4eba\\u4eba\\u90fd\\u662f\\u7a0b\\u5e8f\\u5458\\u7684\\u65f6\\u4ee3\\u6765\\u4e86", "post_url": "https://juejin.cn/post/7463397212120973375"}, {"post_title": "\\u6b63\\u5f0f\\u5ba3\\u6218\\uff0cDeepSeek \\u9876\\u5f97\\u4f4f\\u5417\\uff1f", "post_url": "https://juejin.cn/post/7464848482987704329"}, {"post_title": "\\u7528 DeepSeek \\u6253\\u9020\\u4f60\\u7684\\u8d85\\u5f3a\\u4ee3\\u7801\\u52a9\\u624b", "post_url": "https://juejin.cn/post/7454888708588945443"}, {"post_title": "\\u521a\\u521a\\uff0cDeepSeek \\u89e3\\u7b54\\u4e86\\u56f0\\u6270\\u6211\\u4e94\\u5e74\\u7684\\u6280\\u672f\\u95ee\\u9898\\u3002\\u65f6\\u4ee3\\u786e\\u5b9e\\u53d8\\u4e86\\uff01", "post_url": "https://juejin.cn/post/7472248441454018575"}, {"post_title": "\\u653e\\u5f03\\u6ca1\\u7528\\u7684\\u672c\\u5730\\u90e8\\u7f72\\u6b8b\\u8840\\u7248DeepSeek\\u5427\\uff0c\\u6559\\u4f60\\u5982\\u4f55\\u767d\\u5ad6\\u6ee1\\u8840\\u7248DeepSeek", "post_url": "https://juejin.cn/post/7466832084486914083"}]}']
history.errors()---> [None, None, None, None, None, None, None, None]
history.model_actions()---> [{'go_to_url': {'url': 'https://juejin.cn'}, 'interacted_element': None}, {'input_text': {'index': 11, 'text': 'Vue'}, 'interacted_element': DOMHistoryElement(tag_name='input', xpath='html/body/div/div/div/div/div/div/header/div/nav/ul/ul/li/ul/li/form/input', highlight_index=11, entire_parent_branch_path=['div', 'div', 'div', 'div', 'div', 'div', 'header', 'div', 'nav', 'ul', 'ul', 'li', 'ul', 'li', 'form', 'input'], attributes={'type': 'search', 'maxlength': '64', 'placeholder': '探索稀土掘金', 'value': '', 'class': 'search-input', 'data-v-fdf9839c': ''}, shadow_root=False, css_selector='html > body > div > div > div > div > div > div > header > div > nav > ul > ul > li > ul > li > form > input.search-input[type="search"][placeholder="探索稀土掘金"]', page_coordinates=None, viewport_coordinates=None, viewport_info=None)}, {'click_element': {'index': 11}, 'interacted_element': DOMHistoryElement(tag_name='input', xpath='html/body/div/div/div/div/div/div/header/div/nav/ul/ul/li/ul/li/form/input', highlight_index=11, entire_parent_branch_path=['div', 'div', 'div', 'div', 'div', 'div', 'header', 'div', 'nav', 'ul', 'ul', 'li', 'ul', 'li', 'form', 'input'], attributes={'type': 'search', 'maxlength': '64', 'placeholder': '探索稀土掘金', 'value': '', 'class': 'search-input', 'data-v-fdf9839c': ''}, shadow_root=False, css_selector='html > body > div > div > div > div > div > div > header > div > nav > ul > ul > li > ul > li > form > input.search-input[type="search"][placeholder="探索稀土掘金"]', page_coordinates=None, viewport_coordinates=None, viewport_info=None)}, {'extract_content': {'goal': "Extract the top 5 articles for 'Vue' including post_title and post_url."}, 'interacted_element': None}, {'input_text': {'index': 11, 'text': 'React'}, 'interacted_element': DOMHistoryElement(tag_name='input', xpath='html/body/div/div/div/div/div/div/header/div/nav/ul/ul/li/ul/li/form/input', highlight_index=11, entire_parent_branch_path=['div', 'div', 'div', 'div', 'div', 'div', 'header', 'div', 'nav', 'ul', 'ul', 'li', 'ul', 'li', 'form', 'input'], attributes={'type': 'search', 'maxlength': '64', 'placeholder': '搜索文章/小册/标签/用户', 'value': '', 'class': 'search-input active', 'data-v-fdf9839c': '', 'style': ''}, shadow_root=False, css_selector='html > body > div > div > div > div > div > div > header > div > nav > ul > ul > li > ul > li > form > input.search-input.active[type="search"][placeholder="搜索文章/小册/标签/用户"]', page_coordinates=None, viewport_coordinates=None, viewport_info=None)}, {'click_element': {'index': 11}, 'interacted_element': DOMHistoryElement(tag_name='input', xpath='html/body/div/div/div/div/div/div/header/div/nav/ul/ul/li/ul/li/form/input', highlight_index=11, entire_parent_branch_path=['div', 'div', 'div', 'div', 'div', 'div', 'header', 'div', 'nav', 'ul', 'ul', 'li', 'ul', 'li', 'form', 'input'], attributes={'type': 'search', 'maxlength': '64', 'placeholder': '搜索文章/小册/标签/用户', 'value': '', 'class': 'search-input active', 'data-v-fdf9839c': '', 'style': ''}, shadow_root=False, css_selector='html > body > div > div > div > div > div > div > header > div > nav > ul > ul > li > ul > li > form > input.search-input.active[type="search"][placeholder="搜索文章/小册/标签/用户"]', page_coordinates=None, viewport_coordinates=None, viewport_info=None)}, {'extract_content': {'goal': "Extract the top 5 articles for 'React' including post_title and post_url."}, 'interacted_element': None}, {'input_text': {'index': 11, 'text': 'AI'}, 'interacted_element': DOMHistoryElement(tag_name='input', xpath='html/body/div/div/div/div/div/div/header/div/nav/ul/ul/li/ul/li/form/input', highlight_index=11, entire_parent_branch_path=['div', 'div', 'div', 'div', 'div', 'div', 'header', 'div', 'nav', 'ul', 'ul', 'li', 'ul', 'li', 'form', 'input'], attributes={'type': 'search', 'maxlength': '64', 'placeholder': '搜索文章/小册/标签/用户', 'value': '', 'class': 'search-input active', 'data-v-fdf9839c': '', 'style': ''}, shadow_root=False, css_selector='html > body > div > div > div > div > div > div > header > div > nav > ul > ul > li > ul > li > form > input.search-input.active[type="search"][placeholder="搜索文章/小册/标签/用户"]', page_coordinates=None, viewport_coordinates=None, viewport_info=None)}, {'click_element': {'index': 11}, 'interacted_element': DOMHistoryElement(tag_name='input', xpath='html/body/div/div/div/div/div/div/header/div/nav/ul/ul/li/ul/li/form/input', highlight_index=11, entire_parent_branch_path=['div', 'div', 'div', 'div', 'div', 'div', 'header', 'div', 'nav', 'ul', 'ul', 'li', 'ul', 'li', 'form', 'input'], attributes={'type': 'search', 'maxlength': '64', 'placeholder': '搜索文章/小册/标签/用户', 'value': '', 'class': 'search-input active', 'data-v-fdf9839c': '', 'style': ''}, shadow_root=False, css_selector='html > body > div > div > div > div > div > div > header > div > nav > ul > ul > li > ul > li > form > input.search-input.active[type="search"][placeholder="搜索文章/小册/标签/用户"]', page_coordinates=None, viewport_coordinates=None, viewport_info=None)}, {'extract_content': {'goal': "Extract the top 5 articles for 'AI' including post_title and post_url."}, 'interacted_element': None}, {'done': {'posts': [{'post_title': 'vue3.5+deepseek+arco+markdown搭建web版流式输出AI模板', 'post_url': 'https://juejin.cn/post/7486369696738017321'}, {'post_title': '🚀🚀🚀尤雨溪连发两条推特墙裂推荐的这些库你一定要知道!', 'post_url': 'https://juejin.cn/post/7484131071569772595'}, {'post_title': '前端佬们!塌房了!用过Element-Plus的进来~', 'post_url': 'https://juejin.cn/post/7485966905418760227'}, {'post_title': '和后端大战三百回合后,卑微前端还是选择了自己写excel导出', 'post_url': 'https://juejin.cn/post/7447368539936587776'}, {'post_title': '从 DeepSeek 看25年前端的一个小趋势', 'post_url': 'https://juejin.cn/post/7468323178931879972'}, {'post_title': '🚀🚀🚀尤雨溪连发两条推特墙裂推荐的这些库你一定要知道!', 'post_url': 'https://juejin.cn/post/7484131071569772595'}, {'post_title': '前端佬们!塌房了!用过Element-Plus的进来~', 'post_url': 'https://juejin.cn/post/7485966905418760227'}, {'post_title': '和后端大战三百回合后,卑微前端还是选择了自己写excel导出', 'post_url': 'https://juejin.cn/post/7447368539936587776'}, {'post_title': 'vue3.5+deepseek+arco+markdown搭建web版流式输出AI模板', 'post_url': 'https://juejin.cn/post/7486369696738017321'}, {'post_title': '从 DeepSeek 看25年前端的一个小趋势', 'post_url': 'https://juejin.cn/post/7468323178931879972'}, {'post_title': '有了Trae,人人都是程序员的时代来了', 'post_url': 'https://juejin.cn/post/7463397212120973375'}, {'post_title': '正式宣战,DeepSeek 顶得住吗?', 'post_url': 'https://juejin.cn/post/7464848482987704329'}, {'post_title': '用 DeepSeek 打造你的超强代码助手', 'post_url': 'https://juejin.cn/post/7454888708588945443'}, {'post_title': '刚刚,DeepSeek 解答了困扰我五年的技术问题。时代确实变了!', 'post_url': 'https://juejin.cn/post/7472248441454018575'}, {'post_title': '放弃没用的本地部署残血版DeepSeek吧,教你如何白嫖满血版DeepSeek', 'post_url': 'https://juejin.cn/post/7466832084486914083'}], 'success': True}, 'interacted_element': None}]
history.is_done()---> True
history.has_errors()---> False
history.model_thoughts()---> [AgentBrain(evaluation_previous_goal='Unknown - No previous actions to evaluate.', memory="Starting the task. Need to open the Juejin website and search for 'Vue', 'React', and 'AI' keywords. Each search should yield at least 5 articles. Currently, 0 out of 3 keywords searched.", next_goal='Open the Juejin website.'), AgentBrain(evaluation_previous_goal='Success - Successfully navigated to the Juejin website.', memory="Task started. Currently, 0 out of 3 keywords searched ('Vue', 'React', 'AI'). Next, search for 'Vue' and extract the top 5 articles.", next_goal="Search for the keyword 'Vue' on Juejin."), AgentBrain(evaluation_previous_goal="Success - Successfully searched for the keyword 'Vue'.", memory="Task in progress. Searched for 'Vue' (1/3 keywords completed). Next, extract the top 5 articles for 'Vue'.", next_goal="Extract the top 5 articles for 'Vue'."), AgentBrain(evaluation_previous_goal="Success - Extracted the top 5 articles for 'Vue'.", memory="Task in progress. Searched for 'Vue' (1/3 keywords completed). Next, search for 'React' and extract the top 5 articles.", next_goal="Search for the keyword 'React' on Juejin."), AgentBrain(evaluation_previous_goal="Success - Successfully searched for the keyword 'React'.", memory="Task in progress. Searched for 'React' (2/3 keywords completed). Next, extract the top 5 articles for 'React'.", next_goal="Extract the top 5 articles for 'React'."), AgentBrain(evaluation_previous_goal="Success - Extracted the top 5 articles for 'React'.", memory="Task in progress. Searched for 'React' (2/3 keywords completed). Next, search for 'AI' and extract the top 5 articles.", next_goal="Search for the keyword 'AI' on Juejin."), AgentBrain(evaluation_previous_goal="Success - Successfully searched for the keyword 'AI'.", memory="Task in progress. Searched for 'AI' (3/3 keywords completed). Next, extract the top 5 articles for 'AI'.", next_goal="Extract the top 5 articles for 'AI'."), AgentBrain(evaluation_previous_goal="Success - Extracted the top 5 articles for 'AI'.", memory="Task completed. Searched for all 3 keywords ('Vue', 'React', 'AI') and extracted the top 5 articles for each. Total of 15 articles collected.", next_goal='Compile and return the final results.')]
history.action_results()---> [ActionResult(is_done=False, success=None, extracted_content='🔗  Navigated to https://juejin.cn', error=None, include_in_memory=True), ActionResult(is_done=False, success=None, extracted_content='⌨️  Input Vue into index 11', error=None, include_in_memory=True), ActionResult(is_done=False, success=None, extracted_content='🖱️  Clicked button with index 11: ', error=None, include_in_memory=True), ActionResult(is_done=False, success=None, extracted_content='📄  Extracted from page\n: ```json\n{\n  "top_5_vue_articles": [\n    {\n      "post_title": "vue3.5+deepseek+arco+markdown搭建web版流式输出AI模板",\n      "post_url": "https://juejin.cn/post/7486369696738017321"\n    },\n    {\n      "post_title": "🚀🚀🚀尤雨溪连发两条推特墙裂推荐的这些库你一定要知道!",\n      "post_url": "https://juejin.cn/post/7484131071569772595"\n    },\n    {\n      "post_title": "前端佬们!塌房了!用过Element-Plus的进来~",\n      "post_url": "https://juejin.cn/post/7485966905418760227"\n    },\n    {\n      "post_title": "和后端大战三百回合后,卑微前端还是选择了自己写excel导出",\n      "post_url": "https://juejin.cn/post/7447368539936587776"\n    },\n    {\n      "post_title": "从 DeepSeek 看25年前端的一个小趋势",\n      "post_url": "https://juejin.cn/post/7468323178931879972"\n    }\n  ]\n}\n```\n', error=None, include_in_memory=True), ActionResult(is_done=False, success=None, extracted_content='⌨️  Input React into index 11', error=None, include_in_memory=True), ActionResult(is_done=False, success=None, extracted_content='🖱️  Clicked button with index 11: ', error=None, include_in_memory=True), ActionResult(is_done=False, success=None, extracted_content='📄  Extracted from page\n: ```json\n{\n  "top_5_react_articles": [\n    {\n      "post_title": "🚀🚀🚀尤雨溪连发两条推特墙裂推荐的这些库你一定要知道!",\n      "post_url": "/post/7484131071569772595"\n    },\n    {\n      "post_title": "前端佬们!塌房了!用过Element-Plus的进来~",\n      "post_url": "/post/7485966905418760227"\n    },\n    {\n      "post_title": "和后端大战三百回合后,卑微前端还是选择了自己写excel导出",\n      "post_url": "/post/7447368539936587776"\n    },\n    {\n      "post_title": "vue3.5+deepseek+arco+markdown搭建web版流式输出AI模板",\n      "post_url": "/post/7486369696738017321"\n    },\n    {\n      "post_title": "从 DeepSeek 看25年前端的一个小趋势",\n      "post_url": "/post/7468323178931879972"\n    }\n  ]\n}\n```\n', error=None, include_in_memory=True), ActionResult(is_done=False, success=None, extracted_content='⌨️  Input AI into index 11', error=None, include_in_memory=True), ActionResult(is_done=False, success=None, extracted_content='🖱️  Clicked button with index 11: ', error=None, include_in_memory=True), ActionResult(is_done=False, success=None, extracted_content='📄  Extracted from page\n: ```json\n{\n  "top_5_ai_articles": [\n    {\n      "post_title": "有了Trae,人人都是程序员的时代来了",\n      "post_url": "/post/7463397212120973375"\n    },\n    {\n      "post_title": "正式宣战,DeepSeek 顶得住吗?",\n      "post_url": "/post/7464848482987704329"\n    },\n    {\n      "post_title": "用 DeepSeek 打造你的超强代码助手",\n      "post_url": "/post/7454888708588945443"\n    },\n    {\n      "post_title": "刚刚,DeepSeek 解答了困扰我五年的技术问题。时代确实变了!",\n      "post_url": "/post/7472248441454018575"\n    },\n    {\n      "post_title": "放弃没用的本地部署残血版DeepSeek吧,教你如何白嫖满血版DeepSeek",\n      "post_url": "/post/7466832084486914083"\n    }\n  ]\n}\n```\n', error=None, include_in_memory=True), ActionResult(is_done=True, success=True, extracted_content='{"posts": [{"post_title": "vue3.5+deepseek+arco+markdown\\u642d\\u5efaweb\\u7248\\u6d41\\u5f0f\\u8f93\\u51faAI\\u6a21\\u677f", "post_url": "https://juejin.cn/post/7486369696738017321"}, {"post_title": "\\ud83d\\ude80\\ud83d\\ude80\\ud83d\\ude80\\u5c24\\u96e8\\u6eaa\\u8fde\\u53d1\\u4e24\\u6761\\u63a8\\u7279\\u5899\\u88c2\\u63a8\\u8350\\u7684\\u8fd9\\u4e9b\\u5e93\\u4f60\\u4e00\\u5b9a\\u8981\\u77e5\\u9053\\uff01", "post_url": "https://juejin.cn/post/7484131071569772595"}, {"post_title": "\\u524d\\u7aef\\u4f6c\\u4eec\\uff01\\u584c\\u623f\\u4e86\\uff01\\u7528\\u8fc7Element-Plus\\u7684\\u8fdb\\u6765~", "post_url": "https://juejin.cn/post/7485966905418760227"}, {"post_title": "\\u548c\\u540e\\u7aef\\u5927\\u6218\\u4e09\\u767e\\u56de\\u5408\\u540e\\uff0c\\u5351\\u5fae\\u524d\\u7aef\\u8fd8\\u662f\\u9009\\u62e9\\u4e86\\u81ea\\u5df1\\u5199excel\\u5bfc\\u51fa", "post_url": "https://juejin.cn/post/7447368539936587776"}, {"post_title": "\\u4ece DeepSeek \\u770b25\\u5e74\\u524d\\u7aef\\u7684\\u4e00\\u4e2a\\u5c0f\\u8d8b\\u52bf", "post_url": "https://juejin.cn/post/7468323178931879972"}, {"post_title": "\\ud83d\\ude80\\ud83d\\ude80\\ud83d\\ude80\\u5c24\\u96e8\\u6eaa\\u8fde\\u53d1\\u4e24\\u6761\\u63a8\\u7279\\u5899\\u88c2\\u63a8\\u8350\\u7684\\u8fd9\\u4e9b\\u5e93\\u4f60\\u4e00\\u5b9a\\u8981\\u77e5\\u9053\\uff01", "post_url": "https://juejin.cn/post/7484131071569772595"}, {"post_title": "\\u524d\\u7aef\\u4f6c\\u4eec\\uff01\\u584c\\u623f\\u4e86\\uff01\\u7528\\u8fc7Element-Plus\\u7684\\u8fdb\\u6765~", "post_url": "https://juejin.cn/post/7485966905418760227"}, {"post_title": "\\u548c\\u540e\\u7aef\\u5927\\u6218\\u4e09\\u767e\\u56de\\u5408\\u540e\\uff0c\\u5351\\u5fae\\u524d\\u7aef\\u8fd8\\u662f\\u9009\\u62e9\\u4e86\\u81ea\\u5df1\\u5199excel\\u5bfc\\u51fa", "post_url": "https://juejin.cn/post/7447368539936587776"}, {"post_title": "vue3.5+deepseek+arco+markdown\\u642d\\u5efaweb\\u7248\\u6d41\\u5f0f\\u8f93\\u51faAI\\u6a21\\u677f", "post_url": "https://juejin.cn/post/7486369696738017321"}, {"post_title": "\\u4ece DeepSeek \\u770b25\\u5e74\\u524d\\u7aef\\u7684\\u4e00\\u4e2a\\u5c0f\\u8d8b\\u52bf", "post_url": "https://juejin.cn/post/7468323178931879972"}, {"post_title": "\\u6709\\u4e86Trae\\uff0c\\u4eba\\u4eba\\u90fd\\u662f\\u7a0b\\u5e8f\\u5458\\u7684\\u65f6\\u4ee3\\u6765\\u4e86", "post_url": "https://juejin.cn/post/7463397212120973375"}, {"post_title": "\\u6b63\\u5f0f\\u5ba3\\u6218\\uff0cDeepSeek \\u9876\\u5f97\\u4f4f\\u5417\\uff1f", "post_url": "https://juejin.cn/post/7464848482987704329"}, {"post_title": "\\u7528 DeepSeek \\u6253\\u9020\\u4f60\\u7684\\u8d85\\u5f3a\\u4ee3\\u7801\\u52a9\\u624b", "post_url": "https://juejin.cn/post/7454888708588945443"}, {"post_title": "\\u521a\\u521a\\uff0cDeepSeek \\u89e3\\u7b54\\u4e86\\u56f0\\u6270\\u6211\\u4e94\\u5e74\\u7684\\u6280\\u672f\\u95ee\\u9898\\u3002\\u65f6\\u4ee3\\u786e\\u5b9e\\u53d8\\u4e86\\uff01", "post_url": "https://juejin.cn/post/7472248441454018575"}, {"post_title": "\\u653e\\u5f03\\u6ca1\\u7528\\u7684\\u672c\\u5730\\u90e8\\u7f72\\u6b8b\\u8840\\u7248DeepSeek\\u5427\\uff0c\\u6559\\u4f60\\u5982\\u4f55\\u767d\\u5ad6\\u6ee1\\u8840\\u7248DeepSeek", "post_url": "https://juejin.cn/post/7466832084486914083"}]}', error=None, include_in_memory=False)]

4. Prompt

用于 控制 Agent 的行为与能力,对其整体逻辑有深层影响。

自定义提示会显著影响性能、稳定性和输出风格。

message_context 字段

5. 持久化会话

增加 Cookie

python 复制代码
context_config = BrowserContextConfig(cookies_file="cookies.json")

五、Demo 示例

1. 简单示例

python 复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import asyncio
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from browser_use import Agent

load_dotenv()

llm = ChatOpenAI(model="gpt-4o")

async def main():
    agent = Agent(
        task="打开 https://cn.vuejs.org/guide/essentials/computed,获取页面里所有的 h2 标签文本及所有的 a 标签文本(以及它的 href)",
        llm=llm,
    )
    result = await agent.run()
    print('result:',result)

if __name__ == "__main__":
    asyncio.run(main())
1.1. 核心流程:
  1. 从 .env 中读取 OPENAI_API_KEY 等信息,初始化 ChatOpenAI。
  2. 创建一个 Agent,指定 task 即描述智能体要完成的任务。
  3. 调用 agent.run() 发起执行,包括浏览器自动化与 LLM 结合的流程。

2. 使用本地的 Chrome 浏览器

python 复制代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from browser_use import Agent, Browser, BrowserConfig
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
import asyncio

load_dotenv()
browser = Browser(
    config=BrowserConfig(
        chrome_instance_path='/Applications/Google Chrome.app/Contents/MacOS/Google Chrome',
    )
)

llm = ChatOpenAI(model="gpt-4o")

agent = Agent(
    task="打开 https://cn.vuejs.org/guide/essentials/computed,获取页面里所有的 h2 标签文本及所有的 a 标签文本(以及它的 href)",
    llm=llm,
    browser=browser,
)

async def main():
    await agent.run()
    await browser.close()

if __name__ == '__main__':
    asyncio.run(main())

3. Prompt

python 复制代码
from pydantic import BaseModel
from typing import List
from dotenv import load_dotenv
from browser_use import Agent, Controller, Browser, BrowserConfig
from langchain_openai import ChatOpenAI
import asyncio

class WikiResult(BaseModel):
    post_title: str
    post_url: str

class WikiResults(BaseModel):
    posts: List[WikiResult]


load_dotenv()

browser = Browser(
    config=BrowserConfig(
        chrome_instance_path='/Applications/Google Chrome.app/Contents/MacOS/Google Chrome',
    )
)

instruction_message = """
你正在访问一个公司内部 Wiki 系统:http://wiki.xxx.com/pages/

你的目标是:
1. 打开该页面并使用搜索功能,输入关键词:RAP
2. 等待页面加载完毕,提取所有与搜索结果相关的条目,包括标题、简要描述和对应链接。
3. 优先提取条目中出现 "接口管理"、"Mock"、"权限" 等关键词的内容。
4. 将所有结果以列表形式返回。

请确保你的返回格式如下:
{
  "posts": [
    {
      "post_title": "xxx",
      "post_url": "http://..."
    },
    ...
  ]
}
"""

controller = Controller(output_model=WikiResults)

async def main():
    task = "搜索 Wiki 中有关 RAP 的内容"
    model = ChatOpenAI(model='gpt-4o')

    agent = Agent(
        task=task,
        llm=model,
        controller=controller,
        browser=browser,
        message_context=instruction_message
    )

    history = await agent.run()
    result = history.final_result()

    if result:
        parsed: WikiResults = WikiResults.model_validate_json(result)

        for post in parsed.posts:
            print('\n--------------------------------')
            print(f'Title:  {post.post_title}')
            print(f'URL:    {post.post_url}')
    else:
        print('No result')


if __name__ == '__main__':
    asyncio.run(main())

录屏2025-03-27 16.03.06.mov

4. 多个 Agent 执行

python 复制代码
agent1 = Agent(
    task="打开 https://cn.vuejs.org/guide/essentials/computed,获取页面里所有的 h2 标签文本及所有的 a 标签文本(以及它的 href)",
    llm=llm,
    use_vision=False
)
result1 = await agent1.run()
agent2 = Agent(
    task="打开 https://docs.browser-use.com/customize/custom-functions,获取页面里所有的 h2 标签文本及所有的 a 标签文本(以及它的 href)",
    llm=llm,
    use_vision=False
)
result2 = await agent2.run()

六、常见操作

1. 修改 LLM 模型

python 复制代码
llm = ChatOpenAI(model="gpt-3.5-turbo")

python 复制代码
llm = ChatOpenAI(model="gpt-4o")

2. 在 .env 中设置 API Key

plain 复制代码
OPENAI_API_KEY=sk-xxxx
ANTHROPIC_API_KEY=xxxxxx

如果你还需使用其他模型(如 Cohere、HuggingFace Hub),可一并配置对应的 Key,并在 Python 脚本中初始化相应的 LLM 对象。

3. 官方文档示例

docs.browser-use.com/introductio... 可以找到更多场景示例,比如如何定制 browser-use 的 Tools、配合 PythonREPLTool 扩展执行 Python 脚本等。


七、UI 测试方式

1. 安装 Gradio

plain 复制代码
pip3 install gradio

2. 运行示例

python 复制代码
import asyncio

import gradio as gr
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI

from browser_use import Agent

load_dotenv()


llm=ChatOpenAI(base_url='https://api.deepseek.com/v1', model='deepseek-chat', api_key="sk-XXX")

async def run_browser_task(
    task: str,
) -> str:
    try:
        print('task', task)
        agent = Agent(
            task=task,
            llm=llm,
            use_vision=False
        )
        result = await agent.run()
        print('final_result()', result.final_result())
        return result
    except Exception as e:
        return f'Error: {str(e)}'


def create_ui():
    with gr.Blocks(title='Browser Use GUI') as interface:
        gr.Markdown('# Browser Use Task Automation')

        with gr.Row():
            with gr.Column():
                task = gr.Textbox(
                    label='Task Description',
                    placeholder='Task 描述',
                    lines=3,
                )
                model = gr.Dropdown(
                    choices=['gpt-4', 'gpt-3.5-turbo'], label='Model', value='gpt-4'
                )
                headless = gr.Checkbox(label='Run Headless', value=True)
                submit_btn = gr.Button('Run Task')

            with gr.Column():
                output = gr.Textbox(label='Output', lines=10, interactive=False)

        submit_btn.click(
            fn=lambda *args: asyncio.run(run_browser_task(task.value)),
            inputs=[task, model, headless],
            outputs=output,
        )

    return interface


if __name__ == '__main__':
    demo = create_ui()
    demo.launch()

打开终端提示的地址,就能看到一个简易的 web 界面,在界面中输入 task 等信息测试智能体。


八、常见问题 & 解决思路

  • 报错:playwright not installed 或 executable path not found
    • 请确认已执行 playwright install chromium,且安装成功。
  • Python 版本过低
    • Browser-use 要求 Python >= 3.11,如果你使用的是 3.10 或更低版本,需要升级环境。
  • LLM 调用失败
    • 检查是否在 .env 中填写了正确的 API key,或你的 Key 是否仍在有效期内。
  • 一直执行 Step1
    • Key 没钱了...
  • UI Demo 启动后无法访问
    • 可能是端口占用,或者 Gradio 版本过旧。尝试更新 gradio 或换一个端口。
  • 长时间卡住/超时
    • 检查网络环境,LLM 请求或浏览器加载是否耗时过长。
  • DeepSeek
    • 需要添加 use_vision=False 字段

九、总结

Browser-use 让 AI 与浏览器的结合变得更便捷,能够快速构建出"会浏览网页、抓取信息、进行动态交互"的智能体。只需简单的配置与几行代码,就能让 LLM 自动处理网页操作,为项目带来更多可能性。

  • 使用 Python >= 3.11;
  • 安装并配置好 Playwright;
  • 在主代码中初始化 Agent 并提供 LLM;
  • 在 .env 中存放 API Keys;

十、参考

相关推荐
PacosonSWJTU1 小时前
python基础-13-处理excel电子表格
开发语言·python·excel
訾博ZiBo1 小时前
AI日报 - 2025年4月8日
人工智能
James. 常德 student1 小时前
深度学习之微调
人工智能·深度学习
小军要奋进1 小时前
httpx模块的使用
笔记·爬虫·python·学习·httpx
liuyunshengsir1 小时前
chromadb 安装和使用
人工智能·大模型
FIT2CLOUD飞致云1 小时前
全面支持MCP协议,开启便捷连接之旅,MaxKB知识库问答系统v1.10.3 LTS版本发布
人工智能·开源
Johnny_Cheung2 小时前
字符串、列表、元组、字典
开发语言·python
云水木石2 小时前
ChatGPT-4o 在汉字显示上进步巨大
人工智能·chatgpt
独行soc2 小时前
2025年渗透测试面试题总结- 某四字大厂面试复盘扩展 一面(题目+回答)
java·数据库·python·安全·面试·职场和发展·汽车
Mr_LeeCZ2 小时前
PyTorch 深度学习 || 7. Unet | Ch7.1 Unet 框架
人工智能·深度学习·机器学习