PandaAI:一个基于AI的对话式数据分析工具

PandaAI 是一个基于 Python 开发的自然语言处理和数据分析工具,支持问答式(ChatGPT)的数据分析和报告生成功能。PandaAI 提供了一个开源的框架,主要核心组件包含用于数据处理的数据准备层(Pandas)以及实现 Text2SQL 功能的自然语言接口。

数据源

PandaAI 支持文件、数据库以及大数据平台等多种数据源连接,包括 Excel、CSV、MySQL、PostgreSQL、Oracle、Microsoft SQL Server、Databricks、Redshift、Snowflake、ClickHouse、Supabase、BigQuery、Salesforce 等。

自然语言查询

用户可直接用自然语言提问,例如"GDP 排名前五的国家是哪些?,PandaAI 会自动将问题转化为 Python 代码或 SQL 查询,并返回结果。

可视化面板

PandaAI 支持生成多种图表(例如柱状图、 饼图、折线图等)和分析报告,通过简单指令即可实现数据可视化,无需手动编写绘图代码。

团队分享

PandaAI 支持用户权限管理,可以将查询结果分享给业务团队或者其他数据团队成员。

多语言模型

PandaAI 提供了 LiteLLM 模型接口,支持各种大语言模型(LLM),包括 OpenAI、Azure、Anthropic、Google、AWSHugging Face 等;默认使用 BambooLLM。

快速体验

PandaAI 提供了一个免费的在线体验平台(PandaBI),输入以下网址:

https://app.pandabi.ai/

使用邮箱注册一个免费账号,然后登录系统:

在输入问题之前,我们需要配置数据源。左侧的"Datasets"用于导入文件;"Connectors"用于连接数据库;"API Keys"用于生成 API 调用密钥,如果自行安装部署需要使用这个密钥。

我们使用文件导入功能导入一份员工信息数据 CSV 文件,然后提问"月薪最高的 5 名员工?":

如果想要自行安装,使用 pip 工具安装 pandasai 模块的方式如下:

bash 复制代码
pip install "pandasai>=3.0.0b2"

然后使用 PandaAI 回答问题:

python 复制代码
import pandasai as pai

# Sample DataFrame
df = pai.DataFrame({
    "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
    "revenue": [5000, 3200, 2900, 4100, 2300, 2100, 2500, 2600, 4500, 7000]
})

# By default, unless you choose a different LLM, it will use BambooLLM.
# You can get your free API key signing up at https://app.pandabi.ai (you can also configure it in your .env file)
pai.api_key.set("your-pai-api-key")

df.chat('Which are the top 5 countries by sales?')
bash 复制代码
China, United States, Japan, Germany, Australia

或者生成可视化图表:

python 复制代码
df.chat(
    "Plot the histogram of countries showing for each one the gd. Use different colors for each bar",
)

进一步使用可以参考官方文档:

https://docs.getpanda.ai/v3/introduction

相关推荐
AndyHeee3 分钟前
【windows使用TensorFlow,GPU无法识别问题汇总,含TensorFlow完整安装过程】
人工智能·windows·tensorflow
jay神18 分钟前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
交通上的硅基思维25 分钟前
人工智能安全:风险、机制与治理框架研究
人工智能·安全·百度
老百姓懂点AI28 分钟前
[测试工程] 告别“玄学”评测:智能体来了(西南总部)基于AI agent指挥官的自动化Eval框架与AI调度官的回归测试
运维·人工智能·自动化
2501_9481201532 分钟前
基于量化感知训练的大语言模型压缩方法
人工智能·语言模型·自然语言处理
songyuc35 分钟前
【Llava】load_pretrained_model() 说明
人工智能·深度学习
MARS_AI_36 分钟前
大模型赋能客户沟通,云蝠大模型呼叫实现问题解决全链路闭环
人工智能·自然语言处理·信息与通信·agi
追风少年ii40 分钟前
多组学扩展---分子对接pyrosetta
python·数据分析·空间·单细胞
名为沙丁鱼的猫7291 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
bylander1 小时前
【AI学习】几分钟了解一下Clawdbot
人工智能·智能体·智能体应用