数据分享:汽车测评数据

说明:如需数据 可以直接到文章最后关注获取。

1.数据背景

Car Evaluation汽车测评数据集是一个经典的机器学习数据集,最初由 Marko Bohanec 和 Blaz Zupan 创建,并在 1997 年发表于论文 "Classifier learning from examples: Common pitfalls and solutions" 中。该数据集包含汽车的各种属性及其相应的评估等级,旨在帮助研究人员和从业者测试和验证分类算法的性能。

该数据集主要用于分类任务,特别是多类分类问题。以下是几种常见的应用场景:

分类模型评估:使用各种分类算法(如决策树、随机森林、支持向量机、神经网络等)来训练模型,并评估其性能。

特征工程:研究不同特征对最终评估结果的影响,进行特征选择和特征提取。

模型解释性:分析模型如何根据输入特征做出预测,理解哪些因素最重要。

Car Evaluation 数据集是一个经典且实用的多类分类数据集,适合用于教学、实验和基准测试。通过这个数据集,研究者和实践者可以探索不同的分类算法,并评估它们在实际问题中的表现。

2.数据介绍

数据格式为xlsx格式。

|--------|----------|--------|
| 编号 | 变量名称 | 描述 |
| 1 | buying | 购买价格 |
| 2 | maint | 维护成本 |
| 3 | doors | 车门数量 |
| 4 | persons | 乘客容量 |
| 5 | lug_boot | 行李箱大小 |
| 6 | safety | 安全性 |
| 7 | y | 评估等级 |

数据详情如下(部分展示):

变量名词解释:

buying(购买价格):vhigh(非常高)、high(高)、med(中等)、low(低)

maint(维护成本):vhigh(非常高)、high(高)、med(中等)、low(低)

doors(车门数量):2、3、4、5more(5个或更多)

persons(乘客容量):2、4、more(4个以上)

lug_boot(行李箱大小):small(小)、med(中等)、big(大)

safety(安全性):low(低)、med(中等)、high(高)

y(评估等级):unacc(不可接受)、acc(可接受)、good(良好)、vgood(非常好)

3. 数据 获取

关注下方名片 回复1026获取 或者 CSDN私信发消息获取。

相关推荐
jaray6 小时前
PyCharm 2024.3.2 Professional 如何更换 PyPI 镜像源
ide·python·pycharm·pypi 镜像源
Psycho_MrZhang6 小时前
Neo4j Python SDK手册
开发语言·python·neo4j
Quintus五等升6 小时前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
web3.08889996 小时前
1688图片搜索API,相似商品精准推荐
开发语言·python
少云清7 小时前
【性能测试】15_JMeter _JMeter插件安装使用
开发语言·python·jmeter
光羽隹衡7 小时前
机器学习——TF-IDF实战(红楼梦数据处理)
python·tf-idf
2401_894828128 小时前
从原理到实战:随机森林算法全解析(附 Python 完整代码)
开发语言·python·算法·随机森林
B站计算机毕业设计超人8 小时前
计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hadoop·python·机器学习·知识图谱·课程设计
玄同7658 小时前
Python「焚诀」:吞噬所有语法糖的终极修炼手册
开发语言·数据库·人工智能·python·postgresql·自然语言处理·nlp
johnny2338 小时前
Python管理工具:包、版本、环境
python