数据分享:汽车测评数据

说明:如需数据 可以直接到文章最后关注获取。

1.数据背景

Car Evaluation汽车测评数据集是一个经典的机器学习数据集,最初由 Marko Bohanec 和 Blaz Zupan 创建,并在 1997 年发表于论文 "Classifier learning from examples: Common pitfalls and solutions" 中。该数据集包含汽车的各种属性及其相应的评估等级,旨在帮助研究人员和从业者测试和验证分类算法的性能。

该数据集主要用于分类任务,特别是多类分类问题。以下是几种常见的应用场景:

分类模型评估:使用各种分类算法(如决策树、随机森林、支持向量机、神经网络等)来训练模型,并评估其性能。

特征工程:研究不同特征对最终评估结果的影响,进行特征选择和特征提取。

模型解释性:分析模型如何根据输入特征做出预测,理解哪些因素最重要。

Car Evaluation 数据集是一个经典且实用的多类分类数据集,适合用于教学、实验和基准测试。通过这个数据集,研究者和实践者可以探索不同的分类算法,并评估它们在实际问题中的表现。

2.数据介绍

数据格式为xlsx格式。

|--------|----------|--------|
| 编号 | 变量名称 | 描述 |
| 1 | buying | 购买价格 |
| 2 | maint | 维护成本 |
| 3 | doors | 车门数量 |
| 4 | persons | 乘客容量 |
| 5 | lug_boot | 行李箱大小 |
| 6 | safety | 安全性 |
| 7 | y | 评估等级 |

数据详情如下(部分展示):

变量名词解释:

buying(购买价格):vhigh(非常高)、high(高)、med(中等)、low(低)

maint(维护成本):vhigh(非常高)、high(高)、med(中等)、low(低)

doors(车门数量):2、3、4、5more(5个或更多)

persons(乘客容量):2、4、more(4个以上)

lug_boot(行李箱大小):small(小)、med(中等)、big(大)

safety(安全性):low(低)、med(中等)、high(高)

y(评估等级):unacc(不可接受)、acc(可接受)、good(良好)、vgood(非常好)

3. 数据 获取

关注下方名片 回复1026获取 或者 CSDN私信发消息获取。

相关推荐
毕设源码-赖学姐18 小时前
【开题答辩全过程】以 Python在浙江省人口流动数据分析与城市规划建议的应用为例,包含答辩的问题和答案
开发语言·python·数据分析
qq_73917536918 小时前
Android Studio 实现四则运算+开方+倒数简易计算器
android·python·android studio
万邦科技Lafite19 小时前
如何对接API接口?需要用到哪些软件工具?
java·前端·python·api·开放api·电商开放平台
计算机源码社20 小时前
基于Hadoop的车辆二氧化碳排放量分析与可视化系统|基于Spark的车辆排放量实时监控与预测系统|基于数据挖掘的汽车排放源识别与减排策略系统
大数据·hadoop·机器学习·数据挖掘·spark·毕业设计·课程设计
Godspeed Zhao20 小时前
自动驾驶中的传感器技术64——Navigation(1)
人工智能·机器学习·自动驾驶
Godspeed Zhao20 小时前
自动驾驶中的传感器技术56——USS(2)
人工智能·机器学习·自动驾驶
EEG小佬21 小时前
KAN(Kolmogorov-Arnold Networks)通俗理解
人工智能·python·深度学习·神经网络
做运维的阿瑞21 小时前
告别性能焦虑:Python 性能革命实践指南
开发语言·后端·python
唐叔在学习21 小时前
文档转换神器pypandoc详解:解锁Python跨格式文档转换的终极姿势
后端·python
eqwaak021 小时前
科技信息差(10.2)
开发语言·python·科技·科技信息差