深度集成学习不均衡样本图像分类

用五个不同的网络,然后对分类概率进行平均,得到分类结果。基本上分类精度可以提升10%

1.导入基本库

python 复制代码
import torch
import copy
import torch.nn as nn
import torchvision.models as models
from torchvision import datasets
from torchvision import transforms
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from transformers import AutoModelForImageClassification,AutoConfig

2.数据集准备

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  
])

train_dataset = datasets.ImageFolder(root='./aug_datasets1', transform=transform)
dataset_size  = len(train_dataset)

train_size = int(0.8 * dataset_size)
val_size = dataset_size - train_size

train_dataset, val_dataset = random_split(train_dataset, [train_size, val_size])


train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)

3.定义不同模型与对应的训练策略

模型1 ResNet

python 复制代码
class ResNet(nn.Module):
    def __init__(self, num_classes=21,train=True):
        super(ResNet, self).__init__()
        if(train):
            self.resnet = models.resnet50(weights=torchvision.models.ResNet50_Weights.IMAGENET1K_V1)
        else:
            self.resnet = models.resnet50(weights=None)
        in_features = self.resnet.fc.in_features
        self.resnet.fc = nn.Sequential(
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.resnet.to(device)
    def forward(self, x):
        return self.resnet(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4, weight_decay=1e-4)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
        Best_Acc = 0.0
        print("Training ResNet.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)
                
                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/resnet/model_weights_{}.pth'.format(Best_Acc))

模型2 EfficientNet

python 复制代码
class EfficientNet(nn.Module):
    def __init__(self, num_classes=21,train=True):
        super(EfficientNet, self).__init__()
        if(train):
            self.effnet = models.efficientnet_b2(weights=torchvision.models.EfficientNet_B2_Weights.IMAGENET1K_V1)
        else:
            self.effnet = models.efficientnet_b2(weights=None)
        
        in_features = self.effnet.classifier[1].in_features
        self.effnet.classifier = nn.Sequential(
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.effnet.to(device)
    def forward(self, x):
        return self.effnet(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        # 焦点损失,gamma参数增强对少数类的关注
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4, weight_decay=1e-4)
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5)
        Best_Acc = 0.0
        print("Training EfficientNet.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)
                
                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step(train_loss/len(train_loader))
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/efficientnet/model_weights_{}.pth'.format(Best_Acc))    

模型3 DenseNet

python 复制代码
class DenseNet(nn.Module):
    def __init__(self, num_classes=21, train=True):
        super(DenseNet, self).__init__()
        self.num_classes = num_classes
        if(train):
            self.densenet = models.densenet121(weights=torchvision.models.DenseNet121_Weights.IMAGENET1K_V1)
        else:
            self.densenet = models.densenet121(weights=None) 
        
        in_features = self.densenet.classifier.in_features
        self.densenet.classifier = nn.Sequential(
            nn.BatchNorm1d(in_features),
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.densenet.to(device)
    def forward(self, x):
        return self.densenet(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-4)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
        Best_Acc = 0.0
        print("Training DenseNet.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/densenet/model_weights_{}.pth'.format(Best_Acc))        

模型4 ResNeXt

python 复制代码
class ResNeXt(nn.Module):

    def __init__(self, num_classes=21,train=True):
        super(ResNeXt, self).__init__()
        if(train):
            self.resnext50 = models.resnext50_32x4d(weights=torchvision.models.ResNeXt50_32X4D_Weights.IMAGENET1K_V1)
        else:
            self.resnext50 = models.resnext50_32x4d(weights=None)
        
        in_features = self.resnext50.fc.in_features
        self.resnext50.fc = nn.Sequential(
            nn.BatchNorm1d(in_features),
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.resnext50.to(device)
              
        self.to(device)
    def forward(self, x):
        return self.resnext50(x)

    def startTrain(self, train_loader, val_loader):
        
        optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4)
        scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=5e-4, epochs=30, steps_per_epoch=len(train_loader))        
        criterion = nn.CrossEntropyLoss()
        Best_Acc = 0.0
        print("Training ResNeXt.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step(train_loss/len(train_loader))
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/se-resnext/model_weights_{}.pth'.format(Best_Acc))           

模型5 SwinTransformer

python 复制代码
class SwinTransformer(nn.Module):
    def __init__(self, num_classes=21,train=True):
        super(SwinTransformer, self).__init__()
        if(train):
            self.vit = AutoModelForImageClassification.from_pretrained('./swinv2-tiny-patch4-window16-256/models--microsoft--swinv2-tiny-patch4-window16-256/snapshots/f4d3075206f2ad5eda586c30d6b4d0500f312421/')   
            #这个地方怎么写加载模型
            self.vit.classifier = nn.Sequential(
                nn.Dropout(0.5),
                nn.Linear(self.vit.classifier.in_features, num_classes)
            )
            # 冻结Swin Transformer模型中的所有层
            for param in self.vit.parameters():
                param.requires_grad = False        
            
            # 只解冻最后两个Transformer块和分类头
            for param in self.vit.swinv2.encoder.layers[-4:].parameters():  # 假设你想解冻最后两层
                param.requires_grad = True
            for param in self.vit.classifier.parameters():
                param.requires_grad = True
        else:
            # 先加载 config,然后手动修改 num_labels
            config = AutoConfig.from_pretrained('./saved/swin-transformer/')
            config.num_labels = 21
            self.vit = AutoModelForImageClassification.from_pretrained('./saved/swin-transformer/',config=config)   
        self.vit.to(device)
        
    def forward(self, x):
        return self.vit(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        # 使用标签平滑处理,考虑到类别是连续尺度
        criterion = nn.CrossEntropyLoss()
        # 两阶段训练策略
        # 阶段1: 只训练解冻的层
        num_epochs_stage1 = 10
        num_epochs_stage2 = 10
        optimizer_stage1 = torch.optim.AdamW([p for p in self.parameters() if p.requires_grad], lr=1e-3)

        scheduler_stage1 = torch.optim.lr_scheduler.OneCycleLR(
            optimizer_stage1, max_lr=1e-3, epochs=num_epochs_stage1, steps_per_epoch=len(train_loader)
        )
        best_model_wts = copy.deepcopy(self.state_dict())
        print("Training SwinTransformer.....") 
        print("===== Stage 1 Training =====")
        Best_Acc = 0.0
        for epoch in range(num_epochs_stage1):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer_stage1.zero_grad()
                # 处理图像并将其传递给模型
                outputs = self(images)
                logits = outputs.logits

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer_stage1.step()


                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler_stage1.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    outputs = self(images)
                    logits = outputs.logits

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                best_model_wts = copy.deepcopy(self.state_dict())
                self.vit.save_pretrained('./saved/swin-transformer/', safe_serialization=False)       
        
        # 阶段1结束后加载最佳模型权重
        self.load_state_dict(best_model_wts)    
        Best_Acc = 0.0
        print("===== Stage 2 Training =====")
        # 阶段2: 微调整个网络
        for param in self.parameters():
            param.requires_grad = True
        optimizer_stage2 = torch.optim.Adam(self.parameters(), lr=1e-6)
        scheduler_stage2 = torch.optim.lr_scheduler.OneCycleLR(
            optimizer_stage2, max_lr=5e-6, epochs=num_epochs_stage2, steps_per_epoch=len(train_loader)
        )
        for epoch in range(num_epochs_stage2):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer_stage2.zero_grad()
                # 处理图像并将其传递给模型
                outputs = self(images)
                logits = outputs.logits

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer_stage2.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler_stage2.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    outputs = self(images)
                    logits = outputs.logits

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                self.vit.save_pretrained('./saved/swin-transformer/', safe_serialization=False)       

4.分别训练,然后得到权重

python 复制代码
    swinTransformer= SwinTransformer()
    swinTransformer.startTrain(train_dataloader,val_dataloader)
      
    efficientNet= EfficientNet()
    efficientNet.startTrain(train_dataloader,val_dataloader)

    resNet= ResNet()
    resNet.startTrain(train_dataloader,val_dataloader)
    
    resNeXt= ResNeXt()
    resNeXt.startTrain(train_dataloader,val_dataloader)
    
    denseNet= DenseNet()
    denseNet.startTrain(train_dataloader,val_dataloader)

5.构建集成分类模型

python 复制代码
import torch
import torchvision.transforms as transforms
import torch.nn as nn
from torchvision import datasets
from torchvision import transforms
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from tqdm import tqdm
from PIL import Image

def remove_prefix_from_state_dict(state_dict, prefix='resnext.'):
    return {"resnext50." + k[len(prefix):] if k.startswith(prefix) else k: v for k, v in state_dict.items()}


# 定义集成模型
class EnsembleModel():
    def __init__(self, efficientNet, resNet, resNeXt, denseNet,swinTransformer):
        super(EnsembleModel, self).__init__()

        self.efficientNet= efficientNet.eval()
        self.resNet= resNet.eval()
        self.resNeXt= resNeXt.eval()
        self.denseNet= denseNet.eval()
        self.swinTransformer= swinTransformer.eval()

    def predict(self, x):
        efficientNet_out = torch.softmax(self.efficientNet(x),dim=1)
        resNet_out = torch.softmax(self.resNet(x),dim=1)
        resNeXt_out = torch.softmax(self.resNeXt(x),dim=1)
        denseNet_out = torch.softmax(self.denseNet(x),dim=1)
        swinTransformer_out = torch.softmax(self.swinTransformer(x).logits,dim=1)
        avg_pred = (efficientNet_out + resNet_out + resNeXt_out + denseNet_out + swinTransformer_out ) / 5
        return avg_pred

这样就可以提升性能

相关推荐
yizhimie3714 分钟前
DAY 18 推断聚类后簇的类型
机器学习
databook18 分钟前
机器学习中的"食材挑选术":特征选择方法
python·机器学习·scikit-learn
Xyz_Overlord18 分钟前
机器学习----决策树
人工智能·决策树·机器学习
xsddys20 分钟前
西瓜书第十章——聚类
机器学习·数据挖掘·聚类
weixin_5176621433 分钟前
DAY 18 推断聚类后簇的类型
机器学习·数据挖掘·聚类
苏苏susuus2 小时前
机器学习:逻辑回归与混淆矩阵
机器学习·矩阵·逻辑回归
Joern-Lee2 小时前
机器学习算法:逻辑回归
人工智能·算法·机器学习·逻辑回归
子正2 小时前
ISO18436-2 CATII级振动分析师能力矩阵
机器学习·预防性维护·振动分析
zyq~2 小时前
【课堂笔记】标签传播算法Label Propagation Algorithm(LPA)
人工智能·笔记·算法·机器学习·概率论·lpa·半监督学习
Xyz_Overlord2 小时前
机器学习——集成学习
人工智能·机器学习·集成学习