用五个不同的网络,然后对分类概率进行平均,得到分类结果。基本上分类精度可以提升10%
1.导入基本库
python
import torch
import copy
import torch.nn as nn
import torchvision.models as models
from torchvision import datasets
from torchvision import transforms
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from transformers import AutoModelForImageClassification,AutoConfig
2.数据集准备
python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
train_dataset = datasets.ImageFolder(root='./aug_datasets1', transform=transform)
dataset_size = len(train_dataset)
train_size = int(0.8 * dataset_size)
val_size = dataset_size - train_size
train_dataset, val_dataset = random_split(train_dataset, [train_size, val_size])
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)
3.定义不同模型与对应的训练策略
模型1 ResNet
python
class ResNet(nn.Module):
def __init__(self, num_classes=21,train=True):
super(ResNet, self).__init__()
if(train):
self.resnet = models.resnet50(weights=torchvision.models.ResNet50_Weights.IMAGENET1K_V1)
else:
self.resnet = models.resnet50(weights=None)
in_features = self.resnet.fc.in_features
self.resnet.fc = nn.Sequential(
nn.Linear(in_features, 512),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(512, num_classes)
)
self.resnet.to(device)
def forward(self, x):
return self.resnet(x)
# 训练策略
def startTrain(self, train_loader, val_loader):
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
Best_Acc = 0.0
print("Training ResNet.....")
for epoch in range(10): # 训练 10 个 epoch
self.train()
train_loss = 0
for batch in tqdm(train_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
# 处理图像并将其传递给模型
logits = self(images)
# 计算损失并进行反向传播
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
scheduler.step()
self.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch in tqdm(val_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
# 处理图像并传递给模型
logits = self(images)
# 计算损失
loss = criterion(logits, labels)
val_loss += loss.item()
# 计算准确率
_, predicted = torch.max(logits, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Validation Loss: {val_loss/len(val_loader)}")
print(f"Accuracy: {100 * correct / total}%")
if(100 * correct / total > Best_Acc):
Best_Acc = 100 * correct / total
torch.save(self.state_dict(), './saved/resnet/model_weights_{}.pth'.format(Best_Acc))
模型2 EfficientNet
python
class EfficientNet(nn.Module):
def __init__(self, num_classes=21,train=True):
super(EfficientNet, self).__init__()
if(train):
self.effnet = models.efficientnet_b2(weights=torchvision.models.EfficientNet_B2_Weights.IMAGENET1K_V1)
else:
self.effnet = models.efficientnet_b2(weights=None)
in_features = self.effnet.classifier[1].in_features
self.effnet.classifier = nn.Sequential(
nn.Linear(in_features, 512),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(512, num_classes)
)
self.effnet.to(device)
def forward(self, x):
return self.effnet(x)
# 训练策略
def startTrain(self, train_loader, val_loader):
# 焦点损失,gamma参数增强对少数类的关注
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5)
Best_Acc = 0.0
print("Training EfficientNet.....")
for epoch in range(10): # 训练 10 个 epoch
self.train()
train_loss = 0
for batch in tqdm(train_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
# 处理图像并将其传递给模型
logits = self(images)
# 计算损失并进行反向传播
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
scheduler.step(train_loss/len(train_loader))
self.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch in tqdm(val_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
# 处理图像并传递给模型
logits = self(images)
# 计算损失
loss = criterion(logits, labels)
val_loss += loss.item()
# 计算准确率
_, predicted = torch.max(logits, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Validation Loss: {val_loss/len(val_loader)}")
print(f"Accuracy: {100 * correct / total}%")
if(100 * correct / total > Best_Acc):
Best_Acc = 100 * correct / total
torch.save(self.state_dict(), './saved/efficientnet/model_weights_{}.pth'.format(Best_Acc))
模型3 DenseNet
python
class DenseNet(nn.Module):
def __init__(self, num_classes=21, train=True):
super(DenseNet, self).__init__()
self.num_classes = num_classes
if(train):
self.densenet = models.densenet121(weights=torchvision.models.DenseNet121_Weights.IMAGENET1K_V1)
else:
self.densenet = models.densenet121(weights=None)
in_features = self.densenet.classifier.in_features
self.densenet.classifier = nn.Sequential(
nn.BatchNorm1d(in_features),
nn.Linear(in_features, 512),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(512, num_classes)
)
self.densenet.to(device)
def forward(self, x):
return self.densenet(x)
# 训练策略
def startTrain(self, train_loader, val_loader):
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(self.parameters(), lr=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
Best_Acc = 0.0
print("Training DenseNet.....")
for epoch in range(10): # 训练 10 个 epoch
self.train()
train_loss = 0
for batch in tqdm(train_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
# 处理图像并将其传递给模型
logits = self(images)
# 计算损失并进行反向传播
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
scheduler.step()
self.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch in tqdm(val_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
# 处理图像并传递给模型
logits = self(images)
# 计算损失
loss = criterion(logits, labels)
val_loss += loss.item()
# 计算准确率
_, predicted = torch.max(logits, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Validation Loss: {val_loss/len(val_loader)}")
print(f"Accuracy: {100 * correct / total}%")
if(100 * correct / total > Best_Acc):
Best_Acc = 100 * correct / total
torch.save(self.state_dict(), './saved/densenet/model_weights_{}.pth'.format(Best_Acc))
模型4 ResNeXt
python
class ResNeXt(nn.Module):
def __init__(self, num_classes=21,train=True):
super(ResNeXt, self).__init__()
if(train):
self.resnext50 = models.resnext50_32x4d(weights=torchvision.models.ResNeXt50_32X4D_Weights.IMAGENET1K_V1)
else:
self.resnext50 = models.resnext50_32x4d(weights=None)
in_features = self.resnext50.fc.in_features
self.resnext50.fc = nn.Sequential(
nn.BatchNorm1d(in_features),
nn.Linear(in_features, 512),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(512, num_classes)
)
self.resnext50.to(device)
self.to(device)
def forward(self, x):
return self.resnext50(x)
def startTrain(self, train_loader, val_loader):
optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=5e-4, epochs=30, steps_per_epoch=len(train_loader))
criterion = nn.CrossEntropyLoss()
Best_Acc = 0.0
print("Training ResNeXt.....")
for epoch in range(10): # 训练 10 个 epoch
self.train()
train_loss = 0
for batch in tqdm(train_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
# 处理图像并将其传递给模型
logits = self(images)
# 计算损失并进行反向传播
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
scheduler.step(train_loss/len(train_loader))
self.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch in tqdm(val_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
# 处理图像并传递给模型
logits = self(images)
# 计算损失
loss = criterion(logits, labels)
val_loss += loss.item()
# 计算准确率
_, predicted = torch.max(logits, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Validation Loss: {val_loss/len(val_loader)}")
print(f"Accuracy: {100 * correct / total}%")
if(100 * correct / total > Best_Acc):
Best_Acc = 100 * correct / total
torch.save(self.state_dict(), './saved/se-resnext/model_weights_{}.pth'.format(Best_Acc))
模型5 SwinTransformer
python
class SwinTransformer(nn.Module):
def __init__(self, num_classes=21,train=True):
super(SwinTransformer, self).__init__()
if(train):
self.vit = AutoModelForImageClassification.from_pretrained('./swinv2-tiny-patch4-window16-256/models--microsoft--swinv2-tiny-patch4-window16-256/snapshots/f4d3075206f2ad5eda586c30d6b4d0500f312421/')
#这个地方怎么写加载模型
self.vit.classifier = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(self.vit.classifier.in_features, num_classes)
)
# 冻结Swin Transformer模型中的所有层
for param in self.vit.parameters():
param.requires_grad = False
# 只解冻最后两个Transformer块和分类头
for param in self.vit.swinv2.encoder.layers[-4:].parameters(): # 假设你想解冻最后两层
param.requires_grad = True
for param in self.vit.classifier.parameters():
param.requires_grad = True
else:
# 先加载 config,然后手动修改 num_labels
config = AutoConfig.from_pretrained('./saved/swin-transformer/')
config.num_labels = 21
self.vit = AutoModelForImageClassification.from_pretrained('./saved/swin-transformer/',config=config)
self.vit.to(device)
def forward(self, x):
return self.vit(x)
# 训练策略
def startTrain(self, train_loader, val_loader):
# 使用标签平滑处理,考虑到类别是连续尺度
criterion = nn.CrossEntropyLoss()
# 两阶段训练策略
# 阶段1: 只训练解冻的层
num_epochs_stage1 = 10
num_epochs_stage2 = 10
optimizer_stage1 = torch.optim.AdamW([p for p in self.parameters() if p.requires_grad], lr=1e-3)
scheduler_stage1 = torch.optim.lr_scheduler.OneCycleLR(
optimizer_stage1, max_lr=1e-3, epochs=num_epochs_stage1, steps_per_epoch=len(train_loader)
)
best_model_wts = copy.deepcopy(self.state_dict())
print("Training SwinTransformer.....")
print("===== Stage 1 Training =====")
Best_Acc = 0.0
for epoch in range(num_epochs_stage1): # 训练 10 个 epoch
self.train()
train_loss = 0
for batch in tqdm(train_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
optimizer_stage1.zero_grad()
# 处理图像并将其传递给模型
outputs = self(images)
logits = outputs.logits
# 计算损失并进行反向传播
loss = criterion(logits, labels)
loss.backward()
optimizer_stage1.step()
train_loss += loss.item()
print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
scheduler_stage1.step()
self.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch in tqdm(val_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
# 处理图像并传递给模型
outputs = self(images)
logits = outputs.logits
# 计算损失
loss = criterion(logits, labels)
val_loss += loss.item()
# 计算准确率
_, predicted = torch.max(logits, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Validation Loss: {val_loss/len(val_loader)}")
print(f"Accuracy: {100 * correct / total}%")
if(100 * correct / total > Best_Acc):
Best_Acc = 100 * correct / total
best_model_wts = copy.deepcopy(self.state_dict())
self.vit.save_pretrained('./saved/swin-transformer/', safe_serialization=False)
# 阶段1结束后加载最佳模型权重
self.load_state_dict(best_model_wts)
Best_Acc = 0.0
print("===== Stage 2 Training =====")
# 阶段2: 微调整个网络
for param in self.parameters():
param.requires_grad = True
optimizer_stage2 = torch.optim.Adam(self.parameters(), lr=1e-6)
scheduler_stage2 = torch.optim.lr_scheduler.OneCycleLR(
optimizer_stage2, max_lr=5e-6, epochs=num_epochs_stage2, steps_per_epoch=len(train_loader)
)
for epoch in range(num_epochs_stage2): # 训练 10 个 epoch
self.train()
train_loss = 0
for batch in tqdm(train_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
optimizer_stage2.zero_grad()
# 处理图像并将其传递给模型
outputs = self(images)
logits = outputs.logits
# 计算损失并进行反向传播
loss = criterion(logits, labels)
loss.backward()
optimizer_stage2.step()
train_loss += loss.item()
print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
scheduler_stage2.step()
self.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch in tqdm(val_loader):
images, labels = batch
images, labels = images.to(device), labels.to(device)
# 处理图像并传递给模型
outputs = self(images)
logits = outputs.logits
# 计算损失
loss = criterion(logits, labels)
val_loss += loss.item()
# 计算准确率
_, predicted = torch.max(logits, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Validation Loss: {val_loss/len(val_loader)}")
print(f"Accuracy: {100 * correct / total}%")
if(100 * correct / total > Best_Acc):
Best_Acc = 100 * correct / total
self.vit.save_pretrained('./saved/swin-transformer/', safe_serialization=False)
4.分别训练,然后得到权重
python
swinTransformer= SwinTransformer()
swinTransformer.startTrain(train_dataloader,val_dataloader)
efficientNet= EfficientNet()
efficientNet.startTrain(train_dataloader,val_dataloader)
resNet= ResNet()
resNet.startTrain(train_dataloader,val_dataloader)
resNeXt= ResNeXt()
resNeXt.startTrain(train_dataloader,val_dataloader)
denseNet= DenseNet()
denseNet.startTrain(train_dataloader,val_dataloader)
5.构建集成分类模型
python
import torch
import torchvision.transforms as transforms
import torch.nn as nn
from torchvision import datasets
from torchvision import transforms
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from tqdm import tqdm
from PIL import Image
def remove_prefix_from_state_dict(state_dict, prefix='resnext.'):
return {"resnext50." + k[len(prefix):] if k.startswith(prefix) else k: v for k, v in state_dict.items()}
# 定义集成模型
class EnsembleModel():
def __init__(self, efficientNet, resNet, resNeXt, denseNet,swinTransformer):
super(EnsembleModel, self).__init__()
self.efficientNet= efficientNet.eval()
self.resNet= resNet.eval()
self.resNeXt= resNeXt.eval()
self.denseNet= denseNet.eval()
self.swinTransformer= swinTransformer.eval()
def predict(self, x):
efficientNet_out = torch.softmax(self.efficientNet(x),dim=1)
resNet_out = torch.softmax(self.resNet(x),dim=1)
resNeXt_out = torch.softmax(self.resNeXt(x),dim=1)
denseNet_out = torch.softmax(self.denseNet(x),dim=1)
swinTransformer_out = torch.softmax(self.swinTransformer(x).logits,dim=1)
avg_pred = (efficientNet_out + resNet_out + resNeXt_out + denseNet_out + swinTransformer_out ) / 5
return avg_pred
这样就可以提升性能