深度集成学习不均衡样本图像分类

用五个不同的网络,然后对分类概率进行平均,得到分类结果。基本上分类精度可以提升10%

1.导入基本库

python 复制代码
import torch
import copy
import torch.nn as nn
import torchvision.models as models
from torchvision import datasets
from torchvision import transforms
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from transformers import AutoModelForImageClassification,AutoConfig

2.数据集准备

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  
])

train_dataset = datasets.ImageFolder(root='./aug_datasets1', transform=transform)
dataset_size  = len(train_dataset)

train_size = int(0.8 * dataset_size)
val_size = dataset_size - train_size

train_dataset, val_dataset = random_split(train_dataset, [train_size, val_size])


train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)

3.定义不同模型与对应的训练策略

模型1 ResNet

python 复制代码
class ResNet(nn.Module):
    def __init__(self, num_classes=21,train=True):
        super(ResNet, self).__init__()
        if(train):
            self.resnet = models.resnet50(weights=torchvision.models.ResNet50_Weights.IMAGENET1K_V1)
        else:
            self.resnet = models.resnet50(weights=None)
        in_features = self.resnet.fc.in_features
        self.resnet.fc = nn.Sequential(
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.resnet.to(device)
    def forward(self, x):
        return self.resnet(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4, weight_decay=1e-4)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
        Best_Acc = 0.0
        print("Training ResNet.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)
                
                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/resnet/model_weights_{}.pth'.format(Best_Acc))

模型2 EfficientNet

python 复制代码
class EfficientNet(nn.Module):
    def __init__(self, num_classes=21,train=True):
        super(EfficientNet, self).__init__()
        if(train):
            self.effnet = models.efficientnet_b2(weights=torchvision.models.EfficientNet_B2_Weights.IMAGENET1K_V1)
        else:
            self.effnet = models.efficientnet_b2(weights=None)
        
        in_features = self.effnet.classifier[1].in_features
        self.effnet.classifier = nn.Sequential(
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.effnet.to(device)
    def forward(self, x):
        return self.effnet(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        # 焦点损失,gamma参数增强对少数类的关注
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4, weight_decay=1e-4)
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5)
        Best_Acc = 0.0
        print("Training EfficientNet.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)
                
                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step(train_loss/len(train_loader))
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/efficientnet/model_weights_{}.pth'.format(Best_Acc))    

模型3 DenseNet

python 复制代码
class DenseNet(nn.Module):
    def __init__(self, num_classes=21, train=True):
        super(DenseNet, self).__init__()
        self.num_classes = num_classes
        if(train):
            self.densenet = models.densenet121(weights=torchvision.models.DenseNet121_Weights.IMAGENET1K_V1)
        else:
            self.densenet = models.densenet121(weights=None) 
        
        in_features = self.densenet.classifier.in_features
        self.densenet.classifier = nn.Sequential(
            nn.BatchNorm1d(in_features),
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.densenet.to(device)
    def forward(self, x):
        return self.densenet(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-4)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
        Best_Acc = 0.0
        print("Training DenseNet.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/densenet/model_weights_{}.pth'.format(Best_Acc))        

模型4 ResNeXt

python 复制代码
class ResNeXt(nn.Module):

    def __init__(self, num_classes=21,train=True):
        super(ResNeXt, self).__init__()
        if(train):
            self.resnext50 = models.resnext50_32x4d(weights=torchvision.models.ResNeXt50_32X4D_Weights.IMAGENET1K_V1)
        else:
            self.resnext50 = models.resnext50_32x4d(weights=None)
        
        in_features = self.resnext50.fc.in_features
        self.resnext50.fc = nn.Sequential(
            nn.BatchNorm1d(in_features),
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.resnext50.to(device)
              
        self.to(device)
    def forward(self, x):
        return self.resnext50(x)

    def startTrain(self, train_loader, val_loader):
        
        optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4)
        scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=5e-4, epochs=30, steps_per_epoch=len(train_loader))        
        criterion = nn.CrossEntropyLoss()
        Best_Acc = 0.0
        print("Training ResNeXt.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step(train_loss/len(train_loader))
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/se-resnext/model_weights_{}.pth'.format(Best_Acc))           

模型5 SwinTransformer

python 复制代码
class SwinTransformer(nn.Module):
    def __init__(self, num_classes=21,train=True):
        super(SwinTransformer, self).__init__()
        if(train):
            self.vit = AutoModelForImageClassification.from_pretrained('./swinv2-tiny-patch4-window16-256/models--microsoft--swinv2-tiny-patch4-window16-256/snapshots/f4d3075206f2ad5eda586c30d6b4d0500f312421/')   
            #这个地方怎么写加载模型
            self.vit.classifier = nn.Sequential(
                nn.Dropout(0.5),
                nn.Linear(self.vit.classifier.in_features, num_classes)
            )
            # 冻结Swin Transformer模型中的所有层
            for param in self.vit.parameters():
                param.requires_grad = False        
            
            # 只解冻最后两个Transformer块和分类头
            for param in self.vit.swinv2.encoder.layers[-4:].parameters():  # 假设你想解冻最后两层
                param.requires_grad = True
            for param in self.vit.classifier.parameters():
                param.requires_grad = True
        else:
            # 先加载 config,然后手动修改 num_labels
            config = AutoConfig.from_pretrained('./saved/swin-transformer/')
            config.num_labels = 21
            self.vit = AutoModelForImageClassification.from_pretrained('./saved/swin-transformer/',config=config)   
        self.vit.to(device)
        
    def forward(self, x):
        return self.vit(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        # 使用标签平滑处理,考虑到类别是连续尺度
        criterion = nn.CrossEntropyLoss()
        # 两阶段训练策略
        # 阶段1: 只训练解冻的层
        num_epochs_stage1 = 10
        num_epochs_stage2 = 10
        optimizer_stage1 = torch.optim.AdamW([p for p in self.parameters() if p.requires_grad], lr=1e-3)

        scheduler_stage1 = torch.optim.lr_scheduler.OneCycleLR(
            optimizer_stage1, max_lr=1e-3, epochs=num_epochs_stage1, steps_per_epoch=len(train_loader)
        )
        best_model_wts = copy.deepcopy(self.state_dict())
        print("Training SwinTransformer.....") 
        print("===== Stage 1 Training =====")
        Best_Acc = 0.0
        for epoch in range(num_epochs_stage1):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer_stage1.zero_grad()
                # 处理图像并将其传递给模型
                outputs = self(images)
                logits = outputs.logits

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer_stage1.step()


                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler_stage1.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    outputs = self(images)
                    logits = outputs.logits

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                best_model_wts = copy.deepcopy(self.state_dict())
                self.vit.save_pretrained('./saved/swin-transformer/', safe_serialization=False)       
        
        # 阶段1结束后加载最佳模型权重
        self.load_state_dict(best_model_wts)    
        Best_Acc = 0.0
        print("===== Stage 2 Training =====")
        # 阶段2: 微调整个网络
        for param in self.parameters():
            param.requires_grad = True
        optimizer_stage2 = torch.optim.Adam(self.parameters(), lr=1e-6)
        scheduler_stage2 = torch.optim.lr_scheduler.OneCycleLR(
            optimizer_stage2, max_lr=5e-6, epochs=num_epochs_stage2, steps_per_epoch=len(train_loader)
        )
        for epoch in range(num_epochs_stage2):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer_stage2.zero_grad()
                # 处理图像并将其传递给模型
                outputs = self(images)
                logits = outputs.logits

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer_stage2.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler_stage2.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    outputs = self(images)
                    logits = outputs.logits

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                self.vit.save_pretrained('./saved/swin-transformer/', safe_serialization=False)       

4.分别训练,然后得到权重

python 复制代码
    swinTransformer= SwinTransformer()
    swinTransformer.startTrain(train_dataloader,val_dataloader)
      
    efficientNet= EfficientNet()
    efficientNet.startTrain(train_dataloader,val_dataloader)

    resNet= ResNet()
    resNet.startTrain(train_dataloader,val_dataloader)
    
    resNeXt= ResNeXt()
    resNeXt.startTrain(train_dataloader,val_dataloader)
    
    denseNet= DenseNet()
    denseNet.startTrain(train_dataloader,val_dataloader)

5.构建集成分类模型

python 复制代码
import torch
import torchvision.transforms as transforms
import torch.nn as nn
from torchvision import datasets
from torchvision import transforms
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from tqdm import tqdm
from PIL import Image

def remove_prefix_from_state_dict(state_dict, prefix='resnext.'):
    return {"resnext50." + k[len(prefix):] if k.startswith(prefix) else k: v for k, v in state_dict.items()}


# 定义集成模型
class EnsembleModel():
    def __init__(self, efficientNet, resNet, resNeXt, denseNet,swinTransformer):
        super(EnsembleModel, self).__init__()

        self.efficientNet= efficientNet.eval()
        self.resNet= resNet.eval()
        self.resNeXt= resNeXt.eval()
        self.denseNet= denseNet.eval()
        self.swinTransformer= swinTransformer.eval()

    def predict(self, x):
        efficientNet_out = torch.softmax(self.efficientNet(x),dim=1)
        resNet_out = torch.softmax(self.resNet(x),dim=1)
        resNeXt_out = torch.softmax(self.resNeXt(x),dim=1)
        denseNet_out = torch.softmax(self.denseNet(x),dim=1)
        swinTransformer_out = torch.softmax(self.swinTransformer(x).logits,dim=1)
        avg_pred = (efficientNet_out + resNet_out + resNeXt_out + denseNet_out + swinTransformer_out ) / 5
        return avg_pred

这样就可以提升性能

相关推荐
人类发明了工具1 分钟前
【强化学习】强化学习算法 - 多臂老虎机问题
机器学习·强化学习·多臂老虎机
灏瀚星空30 分钟前
深度学习之LSTM时序预测入门指南:从原理到实战
人工智能·python·深度学习·神经网络·机器学习·数学建模·lstm
极小狐3 小时前
极狐Gitlab 如何创建并使用子群组?
数据库·人工智能·git·机器学习·gitlab
god_Zeo9 小时前
从头训练小模型: 4 lora 微调
人工智能·机器学习
星川皆无恙10 小时前
大数据产品销售数据分析:基于Python机器学习产品销售数据爬虫可视化分析预测系统设计与实现
大数据·运维·爬虫·python·机器学习·数据分析·系统架构
%d%d210 小时前
RuntimeError: CUDA error: __global__ function call is not configured
人工智能·深度学习·机器学习
阿维的博客日记10 小时前
ϵ-prediction和z0-prediction是什么意思
人工智能·深度学习·机器学习
TO ENFJ11 小时前
day 10 机器学习建模与评估
人工智能·机器学习
卧式纯绿12 小时前
卷积神经网络基础(五)
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·cnn
IT古董12 小时前
【漫话机器学习系列】243.数值下溢(Underflow)
人工智能·机器学习