深度集成学习不均衡样本图像分类

用五个不同的网络,然后对分类概率进行平均,得到分类结果。基本上分类精度可以提升10%

1.导入基本库

python 复制代码
import torch
import copy
import torch.nn as nn
import torchvision.models as models
from torchvision import datasets
from torchvision import transforms
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from transformers import AutoModelForImageClassification,AutoConfig

2.数据集准备

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  
])

train_dataset = datasets.ImageFolder(root='./aug_datasets1', transform=transform)
dataset_size  = len(train_dataset)

train_size = int(0.8 * dataset_size)
val_size = dataset_size - train_size

train_dataset, val_dataset = random_split(train_dataset, [train_size, val_size])


train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)

3.定义不同模型与对应的训练策略

模型1 ResNet

python 复制代码
class ResNet(nn.Module):
    def __init__(self, num_classes=21,train=True):
        super(ResNet, self).__init__()
        if(train):
            self.resnet = models.resnet50(weights=torchvision.models.ResNet50_Weights.IMAGENET1K_V1)
        else:
            self.resnet = models.resnet50(weights=None)
        in_features = self.resnet.fc.in_features
        self.resnet.fc = nn.Sequential(
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.resnet.to(device)
    def forward(self, x):
        return self.resnet(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4, weight_decay=1e-4)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
        Best_Acc = 0.0
        print("Training ResNet.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)
                
                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/resnet/model_weights_{}.pth'.format(Best_Acc))

模型2 EfficientNet

python 复制代码
class EfficientNet(nn.Module):
    def __init__(self, num_classes=21,train=True):
        super(EfficientNet, self).__init__()
        if(train):
            self.effnet = models.efficientnet_b2(weights=torchvision.models.EfficientNet_B2_Weights.IMAGENET1K_V1)
        else:
            self.effnet = models.efficientnet_b2(weights=None)
        
        in_features = self.effnet.classifier[1].in_features
        self.effnet.classifier = nn.Sequential(
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.effnet.to(device)
    def forward(self, x):
        return self.effnet(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        # 焦点损失,gamma参数增强对少数类的关注
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4, weight_decay=1e-4)
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5)
        Best_Acc = 0.0
        print("Training EfficientNet.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)
                
                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step(train_loss/len(train_loader))
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/efficientnet/model_weights_{}.pth'.format(Best_Acc))    

模型3 DenseNet

python 复制代码
class DenseNet(nn.Module):
    def __init__(self, num_classes=21, train=True):
        super(DenseNet, self).__init__()
        self.num_classes = num_classes
        if(train):
            self.densenet = models.densenet121(weights=torchvision.models.DenseNet121_Weights.IMAGENET1K_V1)
        else:
            self.densenet = models.densenet121(weights=None) 
        
        in_features = self.densenet.classifier.in_features
        self.densenet.classifier = nn.Sequential(
            nn.BatchNorm1d(in_features),
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.densenet.to(device)
    def forward(self, x):
        return self.densenet(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        
        criterion = nn.CrossEntropyLoss()
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-4)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50)
        Best_Acc = 0.0
        print("Training DenseNet.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/densenet/model_weights_{}.pth'.format(Best_Acc))        

模型4 ResNeXt

python 复制代码
class ResNeXt(nn.Module):

    def __init__(self, num_classes=21,train=True):
        super(ResNeXt, self).__init__()
        if(train):
            self.resnext50 = models.resnext50_32x4d(weights=torchvision.models.ResNeXt50_32X4D_Weights.IMAGENET1K_V1)
        else:
            self.resnext50 = models.resnext50_32x4d(weights=None)
        
        in_features = self.resnext50.fc.in_features
        self.resnext50.fc = nn.Sequential(
            nn.BatchNorm1d(in_features),
            nn.Linear(in_features, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )
        self.resnext50.to(device)
              
        self.to(device)
    def forward(self, x):
        return self.resnext50(x)

    def startTrain(self, train_loader, val_loader):
        
        optimizer = torch.optim.AdamW(self.parameters(), lr=1e-4)
        scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=5e-4, epochs=30, steps_per_epoch=len(train_loader))        
        criterion = nn.CrossEntropyLoss()
        Best_Acc = 0.0
        print("Training ResNeXt.....")
        for epoch in range(10):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer.zero_grad()
                # 处理图像并将其传递给模型
                logits = self(images)

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler.step(train_loss/len(train_loader))
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    logits = self(images)

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                torch.save(self.state_dict(), './saved/se-resnext/model_weights_{}.pth'.format(Best_Acc))           

模型5 SwinTransformer

python 复制代码
class SwinTransformer(nn.Module):
    def __init__(self, num_classes=21,train=True):
        super(SwinTransformer, self).__init__()
        if(train):
            self.vit = AutoModelForImageClassification.from_pretrained('./swinv2-tiny-patch4-window16-256/models--microsoft--swinv2-tiny-patch4-window16-256/snapshots/f4d3075206f2ad5eda586c30d6b4d0500f312421/')   
            #这个地方怎么写加载模型
            self.vit.classifier = nn.Sequential(
                nn.Dropout(0.5),
                nn.Linear(self.vit.classifier.in_features, num_classes)
            )
            # 冻结Swin Transformer模型中的所有层
            for param in self.vit.parameters():
                param.requires_grad = False        
            
            # 只解冻最后两个Transformer块和分类头
            for param in self.vit.swinv2.encoder.layers[-4:].parameters():  # 假设你想解冻最后两层
                param.requires_grad = True
            for param in self.vit.classifier.parameters():
                param.requires_grad = True
        else:
            # 先加载 config,然后手动修改 num_labels
            config = AutoConfig.from_pretrained('./saved/swin-transformer/')
            config.num_labels = 21
            self.vit = AutoModelForImageClassification.from_pretrained('./saved/swin-transformer/',config=config)   
        self.vit.to(device)
        
    def forward(self, x):
        return self.vit(x)

    # 训练策略
    def startTrain(self, train_loader, val_loader):
        # 使用标签平滑处理,考虑到类别是连续尺度
        criterion = nn.CrossEntropyLoss()
        # 两阶段训练策略
        # 阶段1: 只训练解冻的层
        num_epochs_stage1 = 10
        num_epochs_stage2 = 10
        optimizer_stage1 = torch.optim.AdamW([p for p in self.parameters() if p.requires_grad], lr=1e-3)

        scheduler_stage1 = torch.optim.lr_scheduler.OneCycleLR(
            optimizer_stage1, max_lr=1e-3, epochs=num_epochs_stage1, steps_per_epoch=len(train_loader)
        )
        best_model_wts = copy.deepcopy(self.state_dict())
        print("Training SwinTransformer.....") 
        print("===== Stage 1 Training =====")
        Best_Acc = 0.0
        for epoch in range(num_epochs_stage1):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer_stage1.zero_grad()
                # 处理图像并将其传递给模型
                outputs = self(images)
                logits = outputs.logits

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer_stage1.step()


                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler_stage1.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    outputs = self(images)
                    logits = outputs.logits

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                best_model_wts = copy.deepcopy(self.state_dict())
                self.vit.save_pretrained('./saved/swin-transformer/', safe_serialization=False)       
        
        # 阶段1结束后加载最佳模型权重
        self.load_state_dict(best_model_wts)    
        Best_Acc = 0.0
        print("===== Stage 2 Training =====")
        # 阶段2: 微调整个网络
        for param in self.parameters():
            param.requires_grad = True
        optimizer_stage2 = torch.optim.Adam(self.parameters(), lr=1e-6)
        scheduler_stage2 = torch.optim.lr_scheduler.OneCycleLR(
            optimizer_stage2, max_lr=5e-6, epochs=num_epochs_stage2, steps_per_epoch=len(train_loader)
        )
        for epoch in range(num_epochs_stage2):  # 训练 10 个 epoch
            self.train()
            train_loss = 0
            for batch in tqdm(train_loader):
                images, labels = batch
                images, labels = images.to(device), labels.to(device)

                optimizer_stage2.zero_grad()
                # 处理图像并将其传递给模型
                outputs = self(images)
                logits = outputs.logits

                # 计算损失并进行反向传播
                loss = criterion(logits, labels)
                loss.backward()
                optimizer_stage2.step()
                

                train_loss += loss.item()
            print(f"Epoch {epoch+1}/{10}, Train Loss: {train_loss/len(train_loader)}")
            scheduler_stage2.step()
            self.eval()
            val_loss = 0
            correct = 0
            total = 0

            with torch.no_grad():
                for batch in tqdm(val_loader):
                    images, labels = batch
                    images, labels = images.to(device), labels.to(device)

                    # 处理图像并传递给模型
                    outputs = self(images)
                    logits = outputs.logits

                    # 计算损失
                    loss = criterion(logits, labels)
                    val_loss += loss.item()

                    # 计算准确率
                    _, predicted = torch.max(logits, 1)
                    total += labels.size(0)
                    correct += (predicted == labels).sum().item()

            print(f"Validation Loss: {val_loss/len(val_loader)}")
            print(f"Accuracy: {100 * correct / total}%")
            if(100 * correct / total > Best_Acc):
                Best_Acc = 100 * correct / total
                self.vit.save_pretrained('./saved/swin-transformer/', safe_serialization=False)       

4.分别训练,然后得到权重

python 复制代码
    swinTransformer= SwinTransformer()
    swinTransformer.startTrain(train_dataloader,val_dataloader)
      
    efficientNet= EfficientNet()
    efficientNet.startTrain(train_dataloader,val_dataloader)

    resNet= ResNet()
    resNet.startTrain(train_dataloader,val_dataloader)
    
    resNeXt= ResNeXt()
    resNeXt.startTrain(train_dataloader,val_dataloader)
    
    denseNet= DenseNet()
    denseNet.startTrain(train_dataloader,val_dataloader)

5.构建集成分类模型

python 复制代码
import torch
import torchvision.transforms as transforms
import torch.nn as nn
from torchvision import datasets
from torchvision import transforms
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from tqdm import tqdm
from PIL import Image

def remove_prefix_from_state_dict(state_dict, prefix='resnext.'):
    return {"resnext50." + k[len(prefix):] if k.startswith(prefix) else k: v for k, v in state_dict.items()}


# 定义集成模型
class EnsembleModel():
    def __init__(self, efficientNet, resNet, resNeXt, denseNet,swinTransformer):
        super(EnsembleModel, self).__init__()

        self.efficientNet= efficientNet.eval()
        self.resNet= resNet.eval()
        self.resNeXt= resNeXt.eval()
        self.denseNet= denseNet.eval()
        self.swinTransformer= swinTransformer.eval()

    def predict(self, x):
        efficientNet_out = torch.softmax(self.efficientNet(x),dim=1)
        resNet_out = torch.softmax(self.resNet(x),dim=1)
        resNeXt_out = torch.softmax(self.resNeXt(x),dim=1)
        denseNet_out = torch.softmax(self.denseNet(x),dim=1)
        swinTransformer_out = torch.softmax(self.swinTransformer(x).logits,dim=1)
        avg_pred = (efficientNet_out + resNet_out + resNeXt_out + denseNet_out + swinTransformer_out ) / 5
        return avg_pred

这样就可以提升性能

相关推荐
kisshuan123961 分钟前
电信杆塔类型识别与分类_fovea_r101_fpn_4xb4-2x_coco模型详解_模型训练与验证_通俗易懂!入门必看系列!
人工智能·目标跟踪·分类
shangjian00717 分钟前
AI大模型-机器学习-分类
人工智能·机器学习·分类
AI科技星1 小时前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
Lun3866buzha1 小时前
基于FCOS和HRNet的易拉罐缺陷检测与分类系统:实现工业质检自动化,提升检测精度与效率_1
分类·数据挖掘·自动化
小鸡吃米…1 小时前
机器学习 - 亲和传播算法
python·机器学习·亲和传播
武子康2 小时前
大数据-210 如何在Scikit-Learn中实现逻辑回归及正则化详解(L1与L2)
大数据·后端·机器学习
jarreyer2 小时前
数据项目分析标准化流程
开发语言·python·机器学习
乾元2 小时前
如何把 CCIE / HCIE 的实验案例改造成 AI 驱动的工程项目——从“实验室能力”到“可交付系统”的完整迁移路径
大数据·运维·网络·人工智能·深度学习·安全·机器学习
QBoson2 小时前
量子机器学习用于药物发现:系统综述
人工智能·机器学习·量子计算
海天一色y2 小时前
基于Resnet50预训练模型实现CIFAR-10数据集的分类任务
人工智能·分类·数据挖掘