基于Python的新能源汽车销量分析与预测(大数据毕设-Python/决策树)

系统概述

基于Python的新能源汽车销量分析与预测系统是一个综合性的数据分析平台,旨在帮助用户深入分析新能源汽车的销售情况,并对未来销量进行精准预测。该系统采用Python编程语言和Flask框架开发,结合了关系数据库、前端技术和多种数据分析算法,为用户提供从数据采集到预测的全流程支持。

系统设计

2.1 系统架构

系统采用经典的B/S(浏览器/服务器)架构,分为前端和后端两部分。前端使用HTML、JavaScript、jQuery、Bootstrap和Echarts框架,实现用户界面的设计和交互,提供直观、友好的用户体验。后端则基于Python编程语言和Flask框架,负责数据处理、模型训练和预测逻辑的实现。通过前后端的紧密协作,系统能够高效地完成数据采集、清洗、分析和预测任务。

2.2 功能模块

系统的主要功能模块包括:

数据采集模块:利用Python的网络爬虫技术,从权威数据源(如汽车之家、乘联会等)自动采集新能源汽车的销售数据,确保数据的实时性和准确性。

数据清洗与存储模块:对采集到的原始数据进行清洗,去除重复值、缺失值和异常值,并将清洗后的数据存储到关系数据库中,为后续分析提供高质量的数据基础。

销量预测模块:集成多种先进的预测模型,如ARIMA差分自回归移动平均算法、决策树回归和Ridge岭回归等,基于历史销售数据和分析结果,对未来销量进行精准预测,帮助用户提前制定销售策略。

数据可视化模块:借助Echarts框架,将清洗后的数据和预测结果以直观的图表形式展示,如折线图、柱状图、饼图等,帮助用户快速了解销量情况和趋势。

用户交互模块:构建用户友好的交互界面,提供数据查询、预测功能以及可视化图表的动态交互,使用户能够方便地获取所需信息并进行深入分析。

2.3 数据库设计

系统采用关系数据库进行数据存储,主要包括以下两张核心表:

销售数据表:存储新能源汽车的销售数据,字段包括车型、销售日期、销量、价格、促销活动等,为数据分析和预测提供基础数据支持。

预测结果表:存储销量预测的结果,字段包括预测值、预测时间、预测模型类型等,方便用户查看和对比不同模型的预测效果。

系统优势

通过该系统,用户可以实现新能源汽车销量的高效分析与精准预测,从而更好地把握市场需求动态,优化库存管理,制定科学合理的销售策略。系统的自动化数据采集、智能化数据分析和直观的可视化展示,使其成为新能源汽车企业决策支持的重要工具。

相关推荐
self_myth10 小时前
【考研/面试必备】操作系统核心原理与IPO机制深度解析
大数据·算法
Calihen的学习日志11 小时前
【Pandas】3.1-数据预处理:列的基本操作
python·pandas
打螺丝否11 小时前
稠密矩阵和稀疏矩阵的对比
python·机器学习·矩阵
这里有鱼汤11 小时前
你以为 FastAPI 足够强?其实 Litestar 能让你的项目更轻量高效
后端·python
DS小龙哥11 小时前
基于华为云的STM32F103C8T6智能停车场管理系统
大数据·stm32·华为云
大学生毕业题目11 小时前
毕业项目推荐:83-基于yolov8/yolov5/yolo11的农作物杂草检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·杂草识别
Kyln.Wu12 小时前
【python实用小脚本-205】[HR揭秘]手工党逐行查Bug的终结者|Python版代码质量“CT机”加速器(建议收藏)
开发语言·python·bug
计算机毕业设计木哥12 小时前
Python毕业设计推荐:基于Django的饮食计划推荐与交流分享平台 饮食健康系统 健康食谱计划系统
开发语言·hadoop·spring boot·后端·python·django·课程设计
小草cys12 小时前
在树莓派集群上部署 Distributed Llama (Qwen 3 14B) 详细指南
python·llama·树莓派·qwen
在未来等你13 小时前
Elasticsearch面试精讲 Day 9:复合查询与过滤器优化
大数据·分布式·elasticsearch·搜索引擎·面试