【数据分析实战】使用 Matplotlib 绘制折线图

1、简述

在日常的数据分析、科研报告、项目可视化展示中,折线图是一种非常常见且直观的数据可视化方式。本文将带你快速上手 Matplotlib,并通过几个实际例子掌握折线图的绘制方法。

Matplotlib 是 Python 中最常用的数据可视化库之一,它能够生成高质量的 2D 图形,是数据分析和科学计算的好帮手。

在本文中我们使用其核心模块 pyplot 来绘制折线图。


2、环境准备

安装 matplotlib:

bash 复制代码
pip install matplotlib

导入所需库:

python 复制代码
import matplotlib.pyplot as plt

3、折线图基础示例

我们从一个最简单的例子开始。

python 复制代码
import matplotlib.pyplot as plt
import matplotlib

# 设置支持中文的字体
matplotlib.rcParams['font.sans-serif'] = ['SimHei']  # 黑体
matplotlib.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 数据
x = [1, 2, 3, 4, 5]
y = [10, 12, 8, 15, 18]

# 绘图
plt.plot(x, y)

# 添加标题和标签
plt.title("简单折线图")
plt.xlabel("X 轴")
plt.ylabel("Y 轴")

# 显示图形
plt.show()

运行后你会看到一个基础的折线图,展示了 y 值随着 x 的变化趋势。


4、折线图实战样例

下面我们列举几个常见的实战场景。

示例 1:添加多个折线并设置图例

python 复制代码
x = [1, 2, 3, 4, 5]
y1 = [10, 12, 8, 15, 18]
y2 = [5, 8, 6, 10, 12]

plt.plot(x, y1, label="产品 A", marker='o')
plt.plot(x, y2, label="产品 B", linestyle='--', marker='s')

plt.title("产品销售趋势")
plt.xlabel("月份")
plt.ylabel("销售量")
plt.legend()  # 显示图例
plt.grid(True)  # 显示网格
plt.show()

✅ 小技巧:通过 marker 添加点样式、通过 linestyle 设置线型,图例用 legend() 来启用。


示例 2:自定义颜色、线宽、字体

python 复制代码
x = [0, 1, 2, 3, 4]
y = [3, 5, 2, 8, 7]

plt.plot(x, y, color='purple', linewidth=2.5, marker='D')

plt.title("定制风格折线图", fontsize=16, fontweight='bold')
plt.xlabel("时间", fontsize=12)
plt.ylabel("值", fontsize=12)

plt.grid(True, linestyle='--', alpha=0.5)
plt.show()

示例 3:保存折线图为图片

python 复制代码
x = list(range(10))
y = [i**2 for i in x]

plt.plot(x, y)
plt.title("平方函数")
plt.savefig("line_chart.png", dpi=300)  # 保存为高清图片
plt.show()

示例 4:日期型折线图

使用 pandas 结合 matplotlib 可绘制时间序列折线图。

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt

# 构造时间序列数据
dates = pd.date_range(start="2023-01-01", periods=7)
values = [10, 15, 13, 17, 20, 18, 25]

plt.plot(dates, values, marker='o')
plt.title("一周访问量趋势")
plt.xlabel("日期")
plt.ylabel("访问量")
plt.xticks(rotation=45)  # 旋转日期标签
plt.tight_layout()
plt.grid(True)
plt.show()

5、小结

Matplotlib 的折线图功能非常强大,通过简单的调用即可完成基础图形绘制,而通过进一步配置样式、图例、标签、保存图片等功能,可以制作出专业感十足的图表。

推荐实践:

  • 将业务数据转化为图形报告
  • 实现监控系统的数据可视化界面
  • 利用 matplotlib + pandas 可视化时间序列趋势

如果你希望对图形交互、动画、嵌入网页等进一步学习,建议结合 PlotlySeaborn 等库深入研究。需要我帮你把这篇整理成 Markdown 博客形式或是加个目录、封面图吗?

相关推荐
Brduino脑机接口技术答疑1 小时前
脑机新手指南(二十一)基于 Brainstorm 的 MEG/EEG 数据分析(上篇)
数据挖掘·数据分析
镜舟科技1 小时前
StarRocks × Tableau 连接器完整使用指南 | 高效数据分析从连接开始
starrocks·数据分析·数据可视化·tableau·连接器·交互式分析·mpp 数据库
好开心啊没烦恼2 小时前
Python 数据分析:DataFrame,生成,用字典创建 DataFrame ,键值对数量不一样怎么办?
开发语言·python·数据挖掘·数据分析
HuashuiMu花水木4 小时前
Matplotlib笔记4----------图像处理
图像处理·笔记·matplotlib
永洪科技12 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
Triv202518 小时前
ECU开发工具链1.10版:更强大的测量、校准与数据分析体验.
microsoft·数据分析·汽车电子开发·校准流程自动化·高速信号采集·测试台架集成·实时数据监控
好开心啊没烦恼18 小时前
Python 数据分析:numpy,抽提,整数数组索引与基本索引扩展(元组传参)。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy·pandas
云天徽上19 小时前
【PaddleOCR】OCR常见关键信息抽取数据集,包含FUNSD、XFUND、WildReceipt等整理,持续更新中......
人工智能·计算机视觉·信息可视化·paddlepaddle·paddleocr·文本识别
陈敬雷-充电了么-CEO兼CTO1 天前
推荐算法系统系列>推荐数据仓库集市的ETL数据处理
大数据·数据库·数据仓库·数据挖掘·数据分析·etl·推荐算法
杨超越luckly1 天前
ArcGISPro应用指南:ArcGISPro制图全流程详解
arcgis·信息可视化·gis·制图·arcgispro