在MaxKB中实现准确的Chat TO SQL(BI)

主要面向考试成绩管理系统(目前支持旭日图、仪表盘柱状图、桑基图、漏斗图、河流图、数据聚合图、散点图、南丁格尔玫瑰图、饼状图、环形图、堆叠柱状图、堆叠折线图、堆叠面积图、面积图、折线图)

主要思路:

第一步实现chat to sql,利用用户问题,生成准确的sql

第二步利用第一步sql查询到的数据,配合MaxKB内置的 <echarts_rander></echarts_rander> 标签实现图表的生成

第一部分:Chat To SQL

方案一:适合表不多的情况,比如5张表左右的级联查询

此方案的重点就是在提示词中加入DSL和DML的描述,如下:

此方案缺点也很明显:适合数据表量小的情况,还有利用大模型只生成了一次SQL,准确率不会太高。

方案二:适合多表的情况,将DSL和DML采用知识库进行存储

为了满足大量表的查询,提前准备DSL和DML的描述,并按照合理分段存入知识库中:

同时,提前准备100个(具体可按照项目实际情况准备个数)用户经常使用的准确SQL,采用QA对方式存入知识库中:

在编排中,先利用问题相似度检索用户问题涉及到的表DSL和DML,并作为提示词给大模型

方案三:最终方案,在前两个方案的基础上,引入SQL专家裁判机制,提高SQL准确率

方案3.1 SQL裁判方案

方案3.1主要先利用三个大模型生成三个SQL,然后在让第四个大模型充当裁判,选出最准确的SQL进行查询

查询效果:

方案3.2 MCP SQL 方案

MCP SQL方案相对要简单些,主要在AI会话节点接入DB MCP,然后利用提示词控制模型进行多次查询校验。

查询效果:

第二部分:SQL TO BI

第二部分的图表展示,主要利用第一步已经生成的SQL查询到数据,采用图表进行展示。核心的思路为:

1.创建图表库,包含常用的echart图表,图表内容为echart官方网站的option,并创建问题关联:

2.在编排中,基于用户的问题判断是否有图表支持,并输出图表名称

3.通过大模型输出的图表名称去知识库查询图表的option,并作为提示词给大模型

整体编排如下:

查询效果:

相关推荐
deephub2 天前
从零开始:用Python和Gemini 3四步搭建你自己的AI Agent
人工智能·python·大语言模型·agent
deephub12 天前
TOON:专为 LLM 设计的轻量级数据格式
人工智能·prompt·大语言模型
编程小白_正在努力中13 天前
第七章深度解析:从零构建智能体框架——模块化设计与全流程落地指南
人工智能·深度学习·大语言模型·agent·智能体
2401_8414956413 天前
MoE算法深度解析:从理论架构到行业实践
人工智能·深度学习·机器学习·自然语言处理·大语言模型·moe·混合专家模型
only-code13 天前
SeqXGPT:Sentence-Level AI-Generated Text Detection —— 把大模型的“波形”变成测谎仪
人工智能·大语言模型·ai检测·文本检测
黑客思维者15 天前
大语言模型对人类语言理解的模拟
大语言模型·自然语言
OpenBayes16 天前
教程上新丨Deepseek-OCR 以极少视觉 token 数在端到端模型中实现 SOTA
人工智能·深度学习·机器学习·ocr·大语言模型·文本处理·deepseek
Stara051118 天前
Ubuntu环境中LLaMA Factory 的部署与配置—构建大语言模型微调平台
ubuntu·lora·大语言模型·模型微调·qlora·llama-factory·实践指南
deephub18 天前
AI智能体落地:Agent-Assist vs 全自动化完整决策指南
人工智能·大语言模型·agent
九章云极AladdinEdu23 天前
论文分享 |Spark-TTS:用解耦语音令牌实现高效可控的语音合成
大语言模型·语音合成·零样本语音克隆·spark-tts·bicodec·属性控制·voxbox数据集