在MaxKB中实现准确的Chat TO SQL(BI)

主要面向考试成绩管理系统(目前支持旭日图、仪表盘柱状图、桑基图、漏斗图、河流图、数据聚合图、散点图、南丁格尔玫瑰图、饼状图、环形图、堆叠柱状图、堆叠折线图、堆叠面积图、面积图、折线图)

主要思路:

第一步实现chat to sql,利用用户问题,生成准确的sql

第二步利用第一步sql查询到的数据,配合MaxKB内置的 <echarts_rander></echarts_rander> 标签实现图表的生成

第一部分:Chat To SQL

方案一:适合表不多的情况,比如5张表左右的级联查询

此方案的重点就是在提示词中加入DSL和DML的描述,如下:

此方案缺点也很明显:适合数据表量小的情况,还有利用大模型只生成了一次SQL,准确率不会太高。

方案二:适合多表的情况,将DSL和DML采用知识库进行存储

为了满足大量表的查询,提前准备DSL和DML的描述,并按照合理分段存入知识库中:

同时,提前准备100个(具体可按照项目实际情况准备个数)用户经常使用的准确SQL,采用QA对方式存入知识库中:

在编排中,先利用问题相似度检索用户问题涉及到的表DSL和DML,并作为提示词给大模型

方案三:最终方案,在前两个方案的基础上,引入SQL专家裁判机制,提高SQL准确率

方案3.1 SQL裁判方案

方案3.1主要先利用三个大模型生成三个SQL,然后在让第四个大模型充当裁判,选出最准确的SQL进行查询

查询效果:

方案3.2 MCP SQL 方案

MCP SQL方案相对要简单些,主要在AI会话节点接入DB MCP,然后利用提示词控制模型进行多次查询校验。

查询效果:

第二部分:SQL TO BI

第二部分的图表展示,主要利用第一步已经生成的SQL查询到数据,采用图表进行展示。核心的思路为:

1.创建图表库,包含常用的echart图表,图表内容为echart官方网站的option,并创建问题关联:

2.在编排中,基于用户的问题判断是否有图表支持,并输出图表名称

3.通过大模型输出的图表名称去知识库查询图表的option,并作为提示词给大模型

整体编排如下:

查询效果:

相关推荐
boonya1 天前
国内外开源大模型 LLM整理
开源·大模型·llm·大语言模型
deephub4 天前
Memento:基于记忆无需微调即可让大语言模型智能体持续学习的框架
人工智能·深度学习·大语言模型·智能体
runfarther8 天前
Milvus 向量数据库开发实战指南
python·ai·大语言模型·数据库开发·milvus
躺柒9 天前
读大语言模型08计算基础设施
人工智能·ai·语言模型·自然语言处理·大语言模型·大语言
deephub9 天前
R-Zero:通过自博弈机制让大语言模型无需外部数据实现自我进化训练
人工智能·深度学习·大语言模型·零样本学习·自博弈机制
HyperAI超神经10 天前
售价3499美元,英伟达Jetson Thor实现机器人与物理世界的实时智能交互
机器人·大语言模型·视觉语言模型·英伟达·physical ai·实时智能交互·gpu 架构
youcans_11 天前
【AGI使用教程】GPT-OSS 本地部署(2)
人工智能·gpt·大语言模型·模型部署·webui
Struart_R16 天前
LLaVA-3D,Video-3D LLM,VG-LLM,SPAR论文解读
人工智能·深度学习·计算机视觉·3d·大语言模型·多模态
Struart_R22 天前
SpatialVLM和SpatialRGPT论文解读
计算机视觉·语言模型·transformer·大语言模型·vlm·视觉理解·空间推理
努力还债的学术吗喽22 天前
2020 GPT3 原文 Language Models are Few-Shot Learners 精选注解
gpt·大模型·llm·gpt-3·大语言模型·few-shot·zero-shot