在MaxKB中实现准确的Chat TO SQL(BI)

主要面向考试成绩管理系统(目前支持旭日图、仪表盘柱状图、桑基图、漏斗图、河流图、数据聚合图、散点图、南丁格尔玫瑰图、饼状图、环形图、堆叠柱状图、堆叠折线图、堆叠面积图、面积图、折线图)

主要思路:

第一步实现chat to sql,利用用户问题,生成准确的sql

第二步利用第一步sql查询到的数据,配合MaxKB内置的 <echarts_rander></echarts_rander> 标签实现图表的生成

第一部分:Chat To SQL

方案一:适合表不多的情况,比如5张表左右的级联查询

此方案的重点就是在提示词中加入DSL和DML的描述,如下:

此方案缺点也很明显:适合数据表量小的情况,还有利用大模型只生成了一次SQL,准确率不会太高。

方案二:适合多表的情况,将DSL和DML采用知识库进行存储

为了满足大量表的查询,提前准备DSL和DML的描述,并按照合理分段存入知识库中:

同时,提前准备100个(具体可按照项目实际情况准备个数)用户经常使用的准确SQL,采用QA对方式存入知识库中:

在编排中,先利用问题相似度检索用户问题涉及到的表DSL和DML,并作为提示词给大模型

方案三:最终方案,在前两个方案的基础上,引入SQL专家裁判机制,提高SQL准确率

方案3.1 SQL裁判方案

方案3.1主要先利用三个大模型生成三个SQL,然后在让第四个大模型充当裁判,选出最准确的SQL进行查询

查询效果:

方案3.2 MCP SQL 方案

MCP SQL方案相对要简单些,主要在AI会话节点接入DB MCP,然后利用提示词控制模型进行多次查询校验。

查询效果:

第二部分:SQL TO BI

第二部分的图表展示,主要利用第一步已经生成的SQL查询到数据,采用图表进行展示。核心的思路为:

1.创建图表库,包含常用的echart图表,图表内容为echart官方网站的option,并创建问题关联:

2.在编排中,基于用户的问题判断是否有图表支持,并输出图表名称

3.通过大模型输出的图表名称去知识库查询图表的option,并作为提示词给大模型

整体编排如下:

查询效果:

相关推荐
deephub3 天前
LMCache:基于KV缓存复用的LLM推理优化方案
人工智能·大语言模型·vllm·kv缓存
java1234_小锋5 天前
Transformer 大语言模型(LLM)基石 - Transformer简介
深度学习·语言模型·llm·transformer·大语言模型
亚里随笔6 天前
SAPO:软自适应策略优化——大语言模型强化学习训练的稳定新范式
人工智能·深度学习·机器学习·语言模型·大语言模型·rlhf
deephub7 天前
自愈型RAG系统:从脆弱管道到闭环智能体的工程实践
人工智能·python·大语言模型·rag
韩曙亮7 天前
【AI 大模型】LangChain 框架 ① ( LangChain 简介 | LangChain 模块 | LangChain 文档 )
人工智能·ai·langchain·llm·大语言模型·prompts·agents
deephub8 天前
Gemini 2.5 Flash / Nano Banana 系统提示词泄露:全文解读+安全隐患分析
人工智能·google·大语言模型·nano banana
盼小辉丶8 天前
Transformer实战(29)——大语言模型(Large Language Model,LLM)
语言模型·transformer·大语言模型·llama
华师数据学院·王嘉宁8 天前
DeepSeek-Math-V2解读:稠密Reward信号回归到RLVR
大语言模型·强化学习·大模型推理
deephub9 天前
LlamaIndex检索调优实战:七个能落地的技术细节
人工智能·python·大语言模型·rag·llamaindex
一个处女座的程序猿11 天前
AI:新书预告—从机器学习避坑指南(分类/回归/聚类/可解释性)到大语言模型落地手记(RAG/Agent/MCP),一场耗时5+3年的技术沉淀—“代码可跑,经验可抄”—【一个处女座的程序猿】携两本AI
人工智能·机器学习·大语言模型