分类算法的介绍和应用场景

分类算法

1.算法介绍

和聚类是有区别的聚类是没有标签的

数据集中必须包含明确的类别标签,即已知每个样本所属的类别。这些标签作为学习的目标,指导模型的训练过程。

2.应用场景

广泛应用于需要对数据进行明确分类和预测的场景,如医疗诊断(判断疾病类型)、图像识别(识别图像中的物体类别)、文本分类(如新闻分类、情感分析等)。

3.常见的算法

  1. 支持向量机SVM
  2. 朴素贝叶斯
  3. K最近邻(KNN)
  4. 人工神经网络
  5. 随机森林
  6. 梯度提升决策树(DBDT)
相关推荐
大千AI助手2 分钟前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
天上的光1 小时前
17.迁移学习
人工智能·机器学习·迁移学习
后台开发者Ethan1 小时前
Python需要了解的一些知识
开发语言·人工智能·python
猫头虎1 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农2 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农2 小时前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机2 小时前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
mit6.8242 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫3 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域3 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序