分类算法的介绍和应用场景

分类算法

1.算法介绍

和聚类是有区别的聚类是没有标签的

数据集中必须包含明确的类别标签,即已知每个样本所属的类别。这些标签作为学习的目标,指导模型的训练过程。

2.应用场景

广泛应用于需要对数据进行明确分类和预测的场景,如医疗诊断(判断疾病类型)、图像识别(识别图像中的物体类别)、文本分类(如新闻分类、情感分析等)。

3.常见的算法

  1. 支持向量机SVM
  2. 朴素贝叶斯
  3. K最近邻(KNN)
  4. 人工神经网络
  5. 随机森林
  6. 梯度提升决策树(DBDT)
相关推荐
麻雀无能为力14 分钟前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心18 分钟前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield1 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域2 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技2 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_12 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎3 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎3 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊3 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪