【端到端】端到端自动驾驶依赖Occupancy进行运动规划?还是可以具有生成局部地图来规划?

端到端自动驾驶系统的架构设计,目前主流做法实际上已经出现两种路径,我们来拆解一下:


🚘 一、Occupancy 是否用于运动规划?

一种趋势是使用 Occupancy 表示作为 中间表征,用于:

  • 运动规划:表示可通行区域、障碍物几何形状
  • 可行驶空间建模:比BEV更精细地表达边界和障碍物体积
  • 不依赖精确物体检测:可以以"可通行/不可通行"为标准做规划

📌 典型工作:

  • Wayve(英国自动驾驶公司) 的 Occupancy Map-based Planning
  • Tesla 的 occupancy flow field:也是 occupancy 表达,预测未来每个 occupancy voxel 的概率和速度方向

Occupancy Networks 在自动驾驶里逐渐被作为一种"更通用、稠密的世界表征"来使用,尤其适合用于规划和碰撞检测。


🗺️ 二、是否可以只生成局部地图用于规划?

这是目前仍然主流的工业落地路线:

  • 从BEV或传感器融合中生成局部地图
  • 局部地图中包括车道线、障碍物、交通规则区域等
  • *再进行规则规划(如A、采样树、优化轨迹)**

📌 优势是:

  • 可解释性强(人类可以看懂地图)
  • 与已有的自动驾驶体系(SLAM、地图规控)兼容
  • 算法稳定、易于调参和控制

🧠 三、未来趋势:端到端 vs 中间表征

路线 是否使用 Occupancy 是否生成局部地图 举例
纯端到端(模仿学习) Comma.ai、原始End-to-End
表征式端到端 Wayve、Tesla occupancy flow
分层模块化 ✅/❌ Apollo、Autoware

🔍 总结一句话:

Occupancy 是越来越被当作"可通行空间"表示,用于运动规划的一个核心输入;但生成结构化的局部地图用于规划仍然是目前更稳定可控的工程路线。

相关推荐
编程武士2 小时前
从50ms到30ms:YOLOv10部署中图像预处理的性能优化实践
人工智能·python·yolo·性能优化
max5006002 小时前
基于Meta Llama的二语习得学习者行为预测计算模型
人工智能·算法·机器学习·分类·数据挖掘·llama
月疯3 小时前
OPENCV摄像头读取视频
人工智能·opencv·音视频
极客天成ScaleFlash3 小时前
极客天成让统一存储从云原生‘进化’到 AI 原生: 不是版本升级,而是基因重组
人工智能·云原生
王哥儿聊AI3 小时前
Lynx:新一代个性化视频生成模型,单图即可生成视频,重新定义身份一致性与视觉质量
人工智能·算法·安全·机器学习·音视频·软件工程
_pinnacle_4 小时前
打开神经网络的黑箱(三) 卷积神经网络(CNN)的模型逻辑
人工智能·神经网络·cnn·黑箱·卷积网络
Ada's4 小时前
深度学习在自动驾驶上应用(二)
人工智能·深度学习·自动驾驶
张较瘦_4 小时前
[论文阅读] 人工智能 + 软件工程 | 从“人工扒日志”到“AI自动诊断”:LogCoT框架的3大核心创新
论文阅读·人工智能·软件工程
lisw054 小时前
连接蓝牙时“无媒体信号”怎么办?
人工智能·机器学习·微服务
扫地的小何尚5 小时前
深度解析 CUDA-QX 0.4 加速 QEC 与求解器库
人工智能·语言模型·llm·gpu·量子计算·nvidia·cuda