FPAG IP核调用小练习

一、调用步骤

1、打开Quartus

右上角搜索ROM,如图所示

2、点击后会弹出如图所示

其中文件路径需要选择你自己的

3、点击OK弹出如图所示

图中红色改为12与1024

4、然后一直点NEXT,直到下图

这里要选择后缀为 .mif的文件

5、用C语言生成 .mif文件

c 复制代码
// 生成1024点正弦波表(C程序)
#include <stdio.h>
#include <math.h>

#define PI 3.14159265358979323846
#define DEPTH 1024  // ROM深度
#define WIDTH 12    // 数据宽度(12位)

int main() {
    FILE *fp = fopen("sine_rom.mif", "w");
    if (!fp) return -1;
    fprintf(fp, "WIDTH=%d;\nDEPTH=%d;\nADDRESS_RADIX=HEX;\nDATA_RADIX=HEX;\nCONTENT BEGIN\n", WIDTH, DEPTH);
    for (int i = 0; i < DEPTH; i++) {
        float phase = (float)i / DEPTH * 2 * PI;
        short value = (short)(sin(phase) * (pow(2, WIDTH-1) - 1));
        fprintf(fp, "%03x : %03x;\n", i, value & 0xFFF);
    }
    fprintf(fp, "END;\n");
    fclose(fp);
    return 0;
}

然后运行.c文件,会在文件所在目录下生成一个.mif文件,然后你就在第4步中选择它就行。

然后一直next,直到finish

二 、核心模块

1、相位累加器

bash 复制代码
module phase_accumulator (
    input wire clk,          // 50MHz系统时钟
    input wire [23:0] K,     // 频率控制字(24位)
    output reg [23:0] phase  // 相位累加值
);
    always @(posedge clk) begin
        phase <= phase + K;  // 相位累加
    end
endmodule

2、波形选择器

bash 复制代码
module waveform_selector (
    input wire [23:0] phase, // 相位地址(24位)
    input wire sel,          // 波形选择(0:正弦,1:方波)
    output reg [11:0] data_out
);
    reg [11:0] sine_data;    // 正弦波数据
    reg [11:0] square_data;  // 方波数据

    // 正弦ROM
    reg [11:0] sine_rom [0:1023];
    initial begin
        $readmemh("sine_rom.mif", sine_rom);
    end
    assign sine_data = sine_rom[phase[22:12]]; // 取中间12位地址

    // 方波ROM
    reg [11:0] square_rom [0:1023];
    initial begin
        $readmemh("square_rom.mif", square_rom);
    end
    assign square_data = square_rom[phase[22:12]];

    always @(*) begin
        if (sel) data_out = square_data;
        else     data_out = sine_data;
    end
endmodule

3、时钟分频器

bash 复制代码
module clock_divider (
    input wire clk_in,    // 50MHz输入时钟
    output reg clk_out    // 分频后的时钟(10MHz)
);
    reg [1:0] cnt;
    always @(posedge clk_in) begin
        cnt <= cnt + 1;
        if (cnt == 2'b11) // 分频系数为4(50MHz → 12.5MHz),或调整为5(10MHz)
            clk_out <= ~clk_out;
    end
endmodule

4、顶层模块

bash 复制代码
module dds_top (
    input wire clk_50m,    // 系统时钟(50MHz)
    input wire [23:0] K,   // 频率控制字(来自拨码开关)
    input wire sel,        // 波形选择(按钮控制)
    output reg [11:0] dac_data // DAC数据输出
);
    wire [23:0] phase;     // 相位累加值
    wire clk_out;          // 分频后的时钟

    // 相位累加器
    phase_accumulator phase_acc (
        .clk(clk_50m),
        .K(K),
        .phase(phase)
    );

    // 波形选择器
    waveform_selector wave_sel (
        .phase(phase),
        .sel(sel),
        .data_out(dac_data)
    );

    // 时钟分频(可选,用于DAC时钟)
    clock_divider clk_div (
        .clk_in(clk_50m),
        .clk_out(clk_out) // 连接到DAC时钟输入
    );
endmodule

5、波形图

参考博客https://blog.csdn.net/weixin_50722839/article/details/109960391

相关推荐
乌恩大侠1 小时前
【OAI】 USRP 在conf文件中的配置,RU选项
fpga开发
qq_小单车1 天前
xilinx-DNA
fpga开发·xilinx
Flamingˢ1 天前
FPGA中的嵌入式块存储器RAM:从原理到实现的完整指南
fpga开发
Flamingˢ1 天前
FPGA中的存储器模型:从IP核到ROM的深度解析与应用实例
网络协议·tcp/ip·fpga开发
FPGA小c鸡2 天前
【FPGA深度学习加速】RNN与LSTM硬件加速完全指南:从算法原理到硬件实现
rnn·深度学习·fpga开发
Aaron15882 天前
通信灵敏度计算与雷达灵敏度计算对比分析
网络·人工智能·深度学习·算法·fpga开发·信息与通信·信号处理
博览鸿蒙2 天前
IC 和 FPGA,到底区别在哪?
fpga开发
思尔芯S2C2 天前
FPGA原型验证实战:如何应对外设连接问题
fpga开发·risc-v·soc设计·prototyping·原型验证
Flamingˢ2 天前
FPGA实战:VGA成像原理、时序详解与Verilog控制器设计与验证
fpga开发
FPGA_小田老师2 天前
xilinx原语:OSERDES2(并串转换器)原语详解
fpga开发·lvds·xilinx原语·oserdese·并串转换