服务化参数调优实战

服务化性能调优

前置准备

  • 完成MindIE环境的安装,参考链接
  • 下载好要调优的模型权重
  • 下载好性能测试数据集

调优流程

下面以Llama3-8B为例,讲解调优全流程

1.查看模型权重大小

Llama3-8B权重为15GB

2.计算npuMemSize

计算公式为:Floor[(单卡显存-空闲占用-权重/NPU卡数)* 系数],系数取值为0.8 单卡空闲显存:61GB 空闲占用:约3GB

npuMemSize = Floor[ (61 - 3 - 15/1 )] * 0.8 = 34GB

3.计算maxBatchSize

maxBatchSize = Total Block Num/Block Num,需要先计算出"Total Block Num"和"Block Num"的值

  • 计算"Total Block Num"的值 Total Block Num = Floor(NPU显存 / (Block Size * 模型网络层数 * 模型注意力头数 * 注意力头大小 * Cache类型字节数 * Cache数))

对于GQA类模型,注意力头大小=hidden_size/num_attention_heads 将以上参数值代入公式,得到Total Block Num = Floor[341024 10241024/(128 * 32 * 8 (4096/32)22)] = 2176

  • 计算单个请求的"Block Num" 所需最大Block Num = Ceil(输入Token数/cacheBlockSize)+Ceil(最大输出Token数/cacheBlockSize) 所需最小Block Num = Ceil(输入Token数/cacheBlockSize) 所需平均Block Num = Ceil(输入Token数/cacheBlockSize)+Ceil(平均输出Token数/cacheBlockSize)

    从下面benchmark信息获取数据集信息: InputTokens: 60(avg), 186(max), 23(min) OutputTokens: 467(avg), maxIterTimes(max), 18(min)

    所需最小Block Num = Ceil(60/128) = 1 所需最大Block Num = Ceil(60/128)+Ceil(512/128) = 5 所需平均Block Num = Ceil(60/128)+Ceil(346/128) = 4

  • 计算"maxBatchSize" 最小maxBatchSize = Floor[Total Block Num/所需最大Block Num] = 435 最大maxBatchSize = Floor[Total Block Num/所需最小Block Num] = 2176 平均maxBatchSize = Floor[Total Block Num/所需平均Block Num] = 544

4.计算maxPrefillBatchSize和maxPrefillTokens的值

  • maxPrefillBatchSize建议设置为:maxBatchSize值的一半 maxPrefillBatchSize = Floor[maxBatchSize/2] = 544/2 = 272

  • maxPrefillTokens的值一般不超过8192 maxPrefillTokens = maxPrefillBatchSize * 数据集token id平均输入长度 = 272*60 = 16320 根据公式计算出的值大于8192,所以maxPrefillTokens的取值为8192

5.更新配置&性能测试

  • 更新配置如下:

  • 实测性能 默认参数测试结果:

参数调优后测试结果:

可以看到,吞吐提升了18%。

相关推荐
ZHOU_WUYI2 分钟前
FastVLM-0.5B 模型解析
人工智能·llm
非门由也5 分钟前
《sklearn机器学习——多标签排序指标》
人工智能·机器学习·sklearn
XZSSWJS9 分钟前
机器学习基础-day06-TensorFlow线性回归
人工智能·机器学习·tensorflow
代码青铜20 分钟前
【实战指南】Cursor前端+Zion后端:10分钟打造能收款的AI商业应用MVP
前端·人工智能
程序员陆通22 分钟前
用 Cursor AI 快速开发你的第一个编程小程序
人工智能·小程序
Geek 研究僧26 分钟前
大疆 Osmo 360:双 1 英寸 + 8K/50fps,改写全景相机市场格局
人工智能·数码相机·智能硬件·相机
Wilber的技术分享36 分钟前
【大模型实战笔记 1】Prompt-Tuning方法
人工智能·笔记·机器学习·大模型·llm·prompt
liliangcsdn40 分钟前
结合prompt分析NodeRAG的build过程
java·服务器·人工智能·数据分析·知识图谱
东方不败之鸭梨的测试笔记40 分钟前
LangChain: Models, Prompts 模型和提示词
人工智能·python·langchain
初恋叫萱萱42 分钟前
AI驱动开发实战:基于飞算JavaAI的在线考试系统设计与实现
人工智能