【机器学习】PCA-奇异值分解-上采样与下采样-傅里叶变换

1. PCA 主成分分析

主成分分析(PCA)是一种常用的数据降维方法。

它通过找到数据中方差最大的方向(主成分),将原始高维数据映射到较低维空间,同时尽可能保留原始信息。

数学实现上,通常通过协方差矩阵的特征值分解或**奇异值分解(SVD)**来完成。主成分对应特征值最大的特征向量。


2. 奇异值分解(SVD)

奇异值分解(Singular Value Decomposition, SVD)将任意矩阵 AAA 分解为:

用途包括:PCA、图像压缩、低秩逼近、矩阵去噪 等。

奇异值大小反映了数据的"能量"分布。


3. 上采样与下采样

上采样(Upsampling):将数据尺寸放大,如将 32×32 图像放大成 64×64。常见方法有:

  • 最近邻插值

  • 双线性插值

  • 转置卷积(反卷积)

下采样(Downsampling):将数据尺寸缩小,如 64×64 → 32×32,常见方法有:

  • 最大池化(Max Pooling)

  • 步长卷积(Stride > 1)

  • 平均池化(Average Pooling)

上采样用于恢复空间信息;下采样用于压缩特征、加快计算。


4. 傅里叶变换(Fourier Transform)

傅里叶变换用于将时域信号转换为频域表示,揭示信号中的频率成分。

  • 连续傅里叶变换:适用于连续信号

  • 离散傅里叶变换(DFT):数字信号分析工具

  • 快速傅里叶变换(FFT):高效实现 DFT 的算法

在图像处理中,用于:

  • 边缘检测

  • 图像滤波(如高通/低通滤波)

  • 去噪处理

频域分析是信号处理的基础工具之一。

相关推荐
Hcoco_me7 分钟前
具身智能 && 自动驾驶相关岗位的技术栈与能力地图
人工智能·机器学习·自动驾驶
yinyan131434 分钟前
一起学springAI系列一:初体验
java·人工智能·ai
一只鹿鹿鹿1 小时前
【网络安全】信息网络安全建设方案(WORD)
人工智能·安全·spring·web安全·低代码
小拇指~1 小时前
梯度下降的基本原理
人工智能·算法·计算机视觉
AndrewHZ1 小时前
【图像处理基石】如何对遥感图像进行实例分割?
图像处理·人工智能·python·大模型·实例分割·detectron2·遥感图像分割
TDengine (老段)2 小时前
TDengine 中 TDgp 中添加机器学习模型
大数据·数据库·算法·机器学习·数据分析·时序数据库·tdengine
CodeShare2 小时前
某中心将举办机器学习峰会
人工智能·机器学习·数据科学
天天找自己2 小时前
精通分类:解析Scikit-learn中的KNN、朴素贝叶斯与决策树(含随机森林)
python·决策树·机器学习·分类·scikit-learn
那就摆吧2 小时前
U-Net vs. 传统CNN:为什么医学图像分割需要跳过连接?
人工智能·神经网络·cnn·u-net·医学图像
深度学习实战训练营2 小时前
中英混合的语音识别XPhoneBERT 监督的音频到音素的编码器结合 f0 特征LID
人工智能·音视频·语音识别