【机器学习】PCA-奇异值分解-上采样与下采样-傅里叶变换

1. PCA 主成分分析

主成分分析(PCA)是一种常用的数据降维方法。

它通过找到数据中方差最大的方向(主成分),将原始高维数据映射到较低维空间,同时尽可能保留原始信息。

数学实现上,通常通过协方差矩阵的特征值分解或**奇异值分解(SVD)**来完成。主成分对应特征值最大的特征向量。


2. 奇异值分解(SVD)

奇异值分解(Singular Value Decomposition, SVD)将任意矩阵 AAA 分解为:

用途包括:PCA、图像压缩、低秩逼近、矩阵去噪 等。

奇异值大小反映了数据的"能量"分布。


3. 上采样与下采样

上采样(Upsampling):将数据尺寸放大,如将 32×32 图像放大成 64×64。常见方法有:

  • 最近邻插值

  • 双线性插值

  • 转置卷积(反卷积)

下采样(Downsampling):将数据尺寸缩小,如 64×64 → 32×32,常见方法有:

  • 最大池化(Max Pooling)

  • 步长卷积(Stride > 1)

  • 平均池化(Average Pooling)

上采样用于恢复空间信息;下采样用于压缩特征、加快计算。


4. 傅里叶变换(Fourier Transform)

傅里叶变换用于将时域信号转换为频域表示,揭示信号中的频率成分。

  • 连续傅里叶变换:适用于连续信号

  • 离散傅里叶变换(DFT):数字信号分析工具

  • 快速傅里叶变换(FFT):高效实现 DFT 的算法

在图像处理中,用于:

  • 边缘检测

  • 图像滤波(如高通/低通滤波)

  • 去噪处理

频域分析是信号处理的基础工具之一。

相关推荐
摘取一颗天上星️14 分钟前
NLP进化史:从规则模板到思维链推理,七次范式革命全解析
人工智能·自然语言处理
知舟不叙41 分钟前
深度学习——基于PyTorch的MNIST手写数字识别详解
人工智能·pytorch·深度学习·手写数字识别
Jamence44 分钟前
多模态大语言模型arxiv论文略读(118)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
愚农搬码1 小时前
LangChain 调用不同类型的多MCP服务
人工智能·后端
AI速译官1 小时前
字节跳动推出视频生成新模型Seedance
人工智能
chenquan2 小时前
ArkFlow 流处理引擎 0.4.0-rc1 发布
人工智能·后端·github
Se7en2582 小时前
使用 Higress AI 网关代理 vLLM 推理服务
人工智能
AI大模型技术社2 小时前
PyTorch手撕CNN:可视化卷积过程+ResNet18训练代码详解
人工智能·神经网络
CSTechEi2 小时前
【IEEE/EI/Scopus检索】2025年第六届模式识别与数据挖掘国际会议 (PRDM 2025)
人工智能·数据挖掘·模式识别·ei学术会议
CSTechEi2 小时前
【SPIE/EI/Scopus检索】2025 年第二届数据挖掘,计算与软件工程国际会议 (DMCSE 2025)
人工智能·数据挖掘·软件工程·信息与通信·ei学术会议