【漫话机器学习系列】210.标准化(Standardization)

标准化(Standardization):深入理解数据预处理中的常用技术

在数据科学与机器学习的实践中,**标准化(Standardization)**是一项极为常见且重要的预处理操作。它可以显著提升模型训练的效率与效果,尤其是在涉及距离计算(如KNN、SVM)或梯度下降的算法中。本文将通过图示公式,深入剖析标准化的定义、计算方法及其应用背景。


什么是标准化?

标准化,也称为 Z-score 归一化,是一种将特征值转换为标准正态分布的方法。标准化后的数据其均值为 0标准差为 1,这意味着数据被"平移"到以 0 为中心,并根据原始分布的离散程度"压缩或拉伸"。


标准化的公式

如下图所示,标准化的数学表达式为:

其中各符号含义为:

  • :标准化后的第 iii 个特征值(橙色注释)

  • ​:原始第 iii 个观察值(绿色注释)

  • :特征向量的平均值(红色注释)

  • :特征向量的标准差(蓝色注释)


如何理解标准化?

标准化的核心思想是"去除位置偏移与量纲影响"。对于不同量纲或尺度的数据(如身高与收入),如果不进行标准化直接输入模型,可能会导致模型更关注数值大的特征,忽略本身重要性相当但数值较小的特征。

通过标准化,我们将每一个样本的特征值减去该特征的平均值,然后除以标准差,从而实现单位标准化。这个处理过程的结果是:

  • 标准化后的数据 均值为 0

  • 标准化后的数据 标准差为 1

  • 标准化后的数据符合标准正态分布(或接近)


为什么要进行标准化?

以下几种情况特别推荐使用标准化:

  1. 不同量纲的特征同时存在

    例如:房价预测模型中同时包含"面积(平方米)"与"房间数(个)"。

  2. 需要计算欧几里得距离或点积的模型

    例如:KNN、KMeans、SVM、线性回归、PCA等。

  3. 模型对特征尺度敏感时

    特别是在使用梯度下降优化算法的场景中,标准化有助于加快收敛速度。


实现方法(Python 示例)

python 复制代码
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

scikit-learn 中,StandardScaler 实现了对每列特征的标准化,即减去均值再除以标准差。它默认沿列方向(每个特征)进行操作。


标准化 vs 归一化(Normalization)

项目 标准化(Standardization) 归一化(Normalization)
定义 减去均值再除以标准差 缩放到 [0, 1] 区间
结果 均值为0,标准差为1 最小值为0,最大值为1
适用 对于有正态分布假设的模型 神经网络输入或图像像素等场景

总结

标准化是一种基础但极其重要的数据预处理方法,它通过"居中+等比例伸缩"将数据调整到标准正态分布状态,为后续建模打下坚实基础。在使用大多数机器学习模型之前,对特征数据进行标准化处理,是提升模型性能与稳定性的关键一步。

相关推荐
AI改变未来2 分钟前
我们该如何使用DeepSeek帮我们减负?
人工智能·deepseek
武乐乐~5 分钟前
论文精读:YOLO-UniOW: Efficient Universal Open-World Object Detection
人工智能·yolo·目标检测
Leinwin5 分钟前
GPT-4.1和GPT-4.1-mini系列模型支持微调功能,助力企业级智能应用深度契合业务需求
人工智能
唐兴通个人6 分钟前
知名人工智能AI培训公开课内训课程培训师培训老师专家咨询顾问唐兴通AI在金融零售制造业医药服务业创新实践应用
人工智能
MVP-curry-萌神23 分钟前
FPGA图像处理(六)------ 图像腐蚀and图像膨胀
图像处理·人工智能·fpga开发
struggle202539 分钟前
ebook2audiobook开源程序使用动态 AI 模型和语音克隆将电子书转换为带有章节和元数据的有声读物。支持 1,107+ 种语言
人工智能·开源·自动化
深空数字孪生42 分钟前
AI+可视化:数据呈现的未来形态
人工智能·信息可视化
鸿蒙布道师1 小时前
宇树科技安全漏洞揭示智能机器人行业隐忧
运维·网络·科技·安全·机器学习·计算机视觉·机器人
标贝科技1 小时前
标贝科技:大模型领域数据标注的重要性与标注类型分享
数据库·人工智能
aminghhhh1 小时前
多模态融合【十九】——MRFS: Mutually Reinforcing Image Fusion and Segmentation
人工智能·深度学习·学习·计算机视觉·多模态