opencv 给图片和视频添加水印

给图片和视频添加水印

  • [1 给图片添加水印](#1 给图片添加水印)
  • [2 给视频添加水印](#2 给视频添加水印)

1 给图片添加水印

代码如下:

python 复制代码
 '''添加水印''' 
    img=cv2.imread(r'../15day4.10/src/xiaoren.png')  
    img2=cv2.imread(r'../15day4.10/src/bg.png')  
    h,w,c=img.shape
    RIO_img2=img2[100:100+h,200:200+w]
    img3=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    _,black=cv2.threshold(cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),30,255,cv2.THRESH_BINARY)
    _,white=cv2.threshold(cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),30,255,cv2.THRESH_BINARY_INV)
    img_bit=cv2.bitwise_and(img,img,mask=white)
    RIO2_img2=cv2.bitwise_and(RIO_img2,RIO_img2,mask=black)
    RIO_img2[::]=cv2.add(RIO2_img2,img_bit)
    cv2.imshow('img',img)
    cv2.imshow("img2",img2)
    # cv2.imshow('RIO_img2',RIO_img2)
    # cv2.imshow('RIO2_img2',RIO2_img2)
    cv2.imshow('img_bit',img_bit)
    cv2.imshow('white',white)
    
    # cv2.imshow('img3',img3)
    cv2.waitKey(0)


步骤:

  • 1.读取logo图和背景图
  • 2.将logo图的 h,w,c=img.shape求出
  • 3.根据logo图高宽,在背景图里用RIO切割出和logo图形状一样的切片出来
  • 4.在对logo图进行掩膜运算得到白色logo
  • 5.对掩膜运算的logo进行反阈值处理得到黑色的logo
  • 6.再将黑色logo对背景图的切片进行按位与运算,使得黑色logo出现在背景图的切片中(只会有黑色logo区域变为黑色,其余不变)
  • 7 将白色logo与logo的原图进行按位与运算得到,原图的logo的部分
  • 8有黑色logo的切片与原图的logo进行相加,再赋值给原背景图的切片部分,最后语言背景图就有了logo了(切片与原图内存共享)

2 给视频添加水印

代码如下:

python 复制代码
def test11(img2,img):
    '''添加水印''' 
    # img=cv2.imread(r'../15day4.10/src/xiaoren.png')  
    # img2=cv2.imread(r'../15day4.10/src/bg.png')  
    h,w,c=img.shape
    RIO_img2=img2[100:100+h,200:200+w]
    img3=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    _,black=cv2.threshold(cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),30,255,cv2.THRESH_BINARY)
    _,white=cv2.threshold(cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),30,255,cv2.THRESH_BINARY_INV)
    img_bit=cv2.bitwise_and(img,img,mask=white)
    RIO2_img2=cv2.bitwise_and(RIO_img2,RIO_img2,mask=black)
    RIO_img2[::]=cv2.add(RIO2_img2,img_bit)
    # cv2.imshow('img',img)
    # cv2.imshow("img2",img2)
    # # cv2.imshow('RIO_img2',RIO_img2)
    # # cv2.imshow('RIO2_img2',RIO2_img2)
    # cv2.imshow('img_bit',img_bit)
    # cv2.imshow('white',white)
    
    # cv2.imshow('img3',img3)
    # cv2.waitKey(0)
    return img2
def test12():
    '''给视频添加logo'''
    path=r'../15day4.10/src/谁.mp4'
    img2=cv2.imread(r"../15day4.10/src/xiaoren.png")
    cap=cv2.VideoCapture(path) #获取视频
    while True:
        # 获取每一帧的图片
        ret,img=cap.read()
        # ret表示是否获取到视频中的图片
        if ret:
            img=test11(img,img2)
            cv2.imshow("img",img)
            if cv2.waitKey(17)&0xff==ord('q'):
                break
        else:
            break
            
    
相关推荐
Coder_Boy_12 分钟前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱2 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º4 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee6 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º6 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能7 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144877 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能