opencv 给图片和视频添加水印

给图片和视频添加水印

  • [1 给图片添加水印](#1 给图片添加水印)
  • [2 给视频添加水印](#2 给视频添加水印)

1 给图片添加水印

代码如下:

python 复制代码
 '''添加水印''' 
    img=cv2.imread(r'../15day4.10/src/xiaoren.png')  
    img2=cv2.imread(r'../15day4.10/src/bg.png')  
    h,w,c=img.shape
    RIO_img2=img2[100:100+h,200:200+w]
    img3=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    _,black=cv2.threshold(cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),30,255,cv2.THRESH_BINARY)
    _,white=cv2.threshold(cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),30,255,cv2.THRESH_BINARY_INV)
    img_bit=cv2.bitwise_and(img,img,mask=white)
    RIO2_img2=cv2.bitwise_and(RIO_img2,RIO_img2,mask=black)
    RIO_img2[::]=cv2.add(RIO2_img2,img_bit)
    cv2.imshow('img',img)
    cv2.imshow("img2",img2)
    # cv2.imshow('RIO_img2',RIO_img2)
    # cv2.imshow('RIO2_img2',RIO2_img2)
    cv2.imshow('img_bit',img_bit)
    cv2.imshow('white',white)
    
    # cv2.imshow('img3',img3)
    cv2.waitKey(0)


步骤:

  • 1.读取logo图和背景图
  • 2.将logo图的 h,w,c=img.shape求出
  • 3.根据logo图高宽,在背景图里用RIO切割出和logo图形状一样的切片出来
  • 4.在对logo图进行掩膜运算得到白色logo
  • 5.对掩膜运算的logo进行反阈值处理得到黑色的logo
  • 6.再将黑色logo对背景图的切片进行按位与运算,使得黑色logo出现在背景图的切片中(只会有黑色logo区域变为黑色,其余不变)
  • 7 将白色logo与logo的原图进行按位与运算得到,原图的logo的部分
  • 8有黑色logo的切片与原图的logo进行相加,再赋值给原背景图的切片部分,最后语言背景图就有了logo了(切片与原图内存共享)

2 给视频添加水印

代码如下:

python 复制代码
def test11(img2,img):
    '''添加水印''' 
    # img=cv2.imread(r'../15day4.10/src/xiaoren.png')  
    # img2=cv2.imread(r'../15day4.10/src/bg.png')  
    h,w,c=img.shape
    RIO_img2=img2[100:100+h,200:200+w]
    img3=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    _,black=cv2.threshold(cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),30,255,cv2.THRESH_BINARY)
    _,white=cv2.threshold(cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),30,255,cv2.THRESH_BINARY_INV)
    img_bit=cv2.bitwise_and(img,img,mask=white)
    RIO2_img2=cv2.bitwise_and(RIO_img2,RIO_img2,mask=black)
    RIO_img2[::]=cv2.add(RIO2_img2,img_bit)
    # cv2.imshow('img',img)
    # cv2.imshow("img2",img2)
    # # cv2.imshow('RIO_img2',RIO_img2)
    # # cv2.imshow('RIO2_img2',RIO2_img2)
    # cv2.imshow('img_bit',img_bit)
    # cv2.imshow('white',white)
    
    # cv2.imshow('img3',img3)
    # cv2.waitKey(0)
    return img2
def test12():
    '''给视频添加logo'''
    path=r'../15day4.10/src/谁.mp4'
    img2=cv2.imread(r"../15day4.10/src/xiaoren.png")
    cap=cv2.VideoCapture(path) #获取视频
    while True:
        # 获取每一帧的图片
        ret,img=cap.read()
        # ret表示是否获取到视频中的图片
        if ret:
            img=test11(img,img2)
            cv2.imshow("img",img)
            if cv2.waitKey(17)&0xff==ord('q'):
                break
        else:
            break
            
    
相关推荐
小Tomkk17 分钟前
AI 提效:利用 AI 从前端 快速转型为UI/UX设计师和产品
前端·人工智能·ui
王哥儿聊AI23 分钟前
CompLLM 来了:长文本 Q&A 效率革命,线性复杂度 + 缓存复用,推理速度与效果双丰收
人工智能·深度学习·机器学习·语言模型
minhuan43 分钟前
构建AI智能体:四十六、Codebuddy MCP 实践:用高德地图搭建旅游攻略系统
人工智能·mcp·codebuddy·高德api
不当菜鸡的程序媛1 小时前
https://duoke360.com/post/35063
人工智能
IT_陈寒1 小时前
SpringBoot3踩坑实录:一个@Async注解让我多扛了5000QPS
前端·人工智能·后端
_Meilinger_2 小时前
碎片笔记|生成模型原理解读:AutoEncoder、GAN 与扩散模型图像生成机制
人工智能·生成对抗网络·gan·扩散模型·图像生成·diffusion model
Listennnn2 小时前
BEV query 式图片点云视觉特征融合
人工智能
DS-RAG2 小时前
万方智能体投票火热进行中~
人工智能
semantist@语校3 小时前
语校网500所里程碑:日本语言学校数据库的标准化与可追溯机制
大数据·数据库·人工智能·百度·语言模型·oracle·github
key063 小时前
《数据出境安全评估办法》企业应对策略
网络·人工智能·安全