<项目代码>YOLO小船识别<目标检测>

项目代码下载链接

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情请阅读博主写的博客

数据集介绍https://blog.csdn.net/qq_53332949/article/details/147381833?spm=1011.2415.3001.5331数据集下载链接:

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone

  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
  • Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
  • Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 识别效果图

相关推荐
AI数据皮皮侠11 小时前
中国上市公司数据(2000-2023年)
大数据·人工智能·python·深度学习·机器学习
我爱计算机视觉11 小时前
ICCV 2025 (Highlight) Being-VL:师夷长技,用NLP的BPE算法统一视觉语言模型
人工智能·算法·语言模型·自然语言处理
FunTester11 小时前
人工智能:技术分类、核心领域与应用全景
人工智能·语言模型·分类
xwz小王子12 小时前
首个零样本跨本体泛化开源具身模型:智源RoboBrain-X0 技术细节全解析
人工智能·团队开发
ggaofeng13 小时前
深度学习基本函数
人工智能·深度学习
XINVRY-FPGA13 小时前
XCVU9P-2FLGA2104E Xilinx AMD Virtex UltraScale+ FPGA
人工智能·嵌入式硬件·fpga开发·硬件工程·dsp开发·射频工程·fpga
Dxy123931021614 小时前
python如何通过链接下载保存视频
python·spring·音视频
Terio_my14 小时前
Java bean 数据校验
java·开发语言·python
Elastic 中国社区官方博客15 小时前
Elasticsearch MCP 服务器:与你的 Index 聊天
大数据·服务器·人工智能·elasticsearch·搜索引擎·ai·全文检索
无咎.lsy15 小时前
裸K初级篇 - (一)蜡烛突破信号
python