人像面部关键点检测

此工作为本人近期做人脸情绪识别,CBAM模块前是否能加人脸关键点检测而做的尝试。由于创新点不是在于检测点的标注,而是CBAM的改进,因此,只是借用了现成库Dilb与cv2进行。

首先,下载人脸关键点预测模型:Index of /files,文件:shape_predictor_68_face_landmarks.dat

逻辑如下:

使用cv2库进行图像读取--->

将读取的图像转为灰度图--->

判断该图是否存在face--->否--->return

将读取的图像输入预测模型--->

进行关键点预测--->(存储关键点位置)

在原图上进行关键点标识--->

保存预测后的图。

效果图如下:(使用fer2013数据集)

Python代码如下

python 复制代码
import os
import cv2
import dlib
import numpy as np

# init
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("./shape_predictor_68_face_landmarks.dat")

def process_image(image_path, output_dir="output", point_radius=0.1):

    os.makedirs(output_dir, exist_ok=True)
    
    # cv2 read image
    image = cv2.imread(image_path)
    # image to gray
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    faces = detector(gray, 1)
    
    if len(faces) == 0:
        print(f"no face!:{image_path}")
        return None
    
    # get point
    landmarks = predictor(gray, faces[0])
    landmarks = np.array([[p.x, p.y] for p in landmarks.parts()])
    
    # draw key point for face
    for (x, y) in landmarks:
        cv2.circle(image, (x, y), radius=point_radius, color=(0, 255, 0), thickness=-1)
    
    output_path = os.path.join(output_dir, f"processed_{os.path.basename(image_path)}")
    cv2.imwrite(output_path, image)
    print(f"Saved:{output_path}")
    
    return landmarks

if __name__=="__main__":
    landmarks = process_image(
        image_path="./00001.png",
        output_dir="./processed_00001",
        point_radius=1  # 关键点半径 只能为整型
    )
相关推荐
攻城狮7号几秒前
一文理清人工智能,机器学习,深度学习的概念
人工智能·深度学习·机器学习·ai
智慧地球(AI·Earth)19 分钟前
当 Manus AI 遇上 OpenAI Operator,谁能更胜一筹?
人工智能
小森776726 分钟前
(七)深度学习---神经网络原理与实现
人工智能·深度学习·神经网络·算法
Fireworkitte27 分钟前
边缘网关(边缘计算)
人工智能·边缘计算
threelab41 分钟前
03.three官方示例+编辑器+AI快速学习webgl_animation_multiple
人工智能·学习·编辑器
skywalk816343 分钟前
开发与AI融合的Windsurf编辑器
人工智能·编辑器
码农新猿类1 小时前
初入OpenCV
qt·opencv·计算机视觉
Cherry Xie1 小时前
腾讯发布数字人框架MuseTalk 1.5,开放训练逻辑,生成效果进一步优化~
人工智能
ViiTor_AI1 小时前
视频翻译软件有哪些?推荐5款视频翻译工具[特殊字符][特殊字符]
人工智能·机器翻译
李恒-聆机智能专精数采1 小时前
从零开始了解数据采集(二十七)——什么IIOT平台
大数据·人工智能·云计算·制造·数据采集·数据可视化