人像面部关键点检测

此工作为本人近期做人脸情绪识别,CBAM模块前是否能加人脸关键点检测而做的尝试。由于创新点不是在于检测点的标注,而是CBAM的改进,因此,只是借用了现成库Dilb与cv2进行。

首先,下载人脸关键点预测模型:Index of /files,文件:shape_predictor_68_face_landmarks.dat

逻辑如下:

使用cv2库进行图像读取--->

将读取的图像转为灰度图--->

判断该图是否存在face--->否--->return

将读取的图像输入预测模型--->

进行关键点预测--->(存储关键点位置)

在原图上进行关键点标识--->

保存预测后的图。

效果图如下:(使用fer2013数据集)

Python代码如下

python 复制代码
import os
import cv2
import dlib
import numpy as np

# init
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("./shape_predictor_68_face_landmarks.dat")

def process_image(image_path, output_dir="output", point_radius=0.1):

    os.makedirs(output_dir, exist_ok=True)
    
    # cv2 read image
    image = cv2.imread(image_path)
    # image to gray
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    faces = detector(gray, 1)
    
    if len(faces) == 0:
        print(f"no face!:{image_path}")
        return None
    
    # get point
    landmarks = predictor(gray, faces[0])
    landmarks = np.array([[p.x, p.y] for p in landmarks.parts()])
    
    # draw key point for face
    for (x, y) in landmarks:
        cv2.circle(image, (x, y), radius=point_radius, color=(0, 255, 0), thickness=-1)
    
    output_path = os.path.join(output_dir, f"processed_{os.path.basename(image_path)}")
    cv2.imwrite(output_path, image)
    print(f"Saved:{output_path}")
    
    return landmarks

if __name__=="__main__":
    landmarks = process_image(
        image_path="./00001.png",
        output_dir="./processed_00001",
        point_radius=1  # 关键点半径 只能为整型
    )
相关推荐
لا معنى له40 分钟前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI2 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.4 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight4 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha4 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir5 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王5 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室6 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛116 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI6 小时前
RAG系列(一) 架构基础与原理
人工智能·架构