《计算机视觉度量:从特征描述到深度学习》—深度学习图像特征工程

传统算法的图像特征分析和描述,一直贯穿图像算法的发展。2017年深度学习的出现,很多开发人员和技术人员认为,图像特征分析这个概念可以被深度学习完全取代。很长一段时间以深度学习为主的视觉方案成为主流,逐渐淡化了传统视觉的特征分析。

随着深度学习的发展,在很多场景应用中,深度学习只能满足部分场景的需求,工程师开始逐渐对深度学习进行分析和拆解。到2020年自编码 深度学习概念的出现,才开始对深度学习的图像特征编码进入深入的理解。逐渐发展出一套针对深度学习编码特征分析的方法。

以Resnet为例,Resnet的结构主要为四个卷积层和一个线性回归层。在通过大数据ImageNet的训练过后,卷积层对1~1000的线性变量学习了一套卷积特征变换函数。通过对图像的卷积编码,获取到各卷积层输出的特征值 。作为后续特征开发的重点,比如比较成功的MaskRcnn和FastRcnn模型就是在图像特征编码的后进行新的训练,完成对目标的检测和识别。以及后来针对VIT网络的YOLO模型。

通过深度学习提取特征的方法,学术上称之为图片的深度BackOne提取。概念的提出也对深度学习的发展有了底层的根据。在2020~2022之间,工程界和学术界还是以主流的回归训练对深度学习特征进行总结和应用,衍生出很多优秀的模型。但是底层没有太大的改变,同样模型性能和场景也出现瓶颈。

在2023年Bert(大语言模型的前身)模型的出现,采用新的数据对齐方法,对生成的深度的数据信息映射为一种人类可以理解的描述语言。这种方法就是目前我们看到的大模型时代,这也为图像分析带来了思路。最近的2024~2025年,不断出现针对图片的大模型应用,比如SAM和Dinov2,CLIP等。也开始出现生成式的图片模型的应用。也就衍生出一种非训练方式的数据对齐方案,比如Agent,MCP,RAG等技术。

这些技术都是采用深度学习对数据的自编码,输出**模型的自编码深度信息,**并采用数据搜索的方式对信息进行匹配,用于更加准确的数据输出。这也是目前工业检测大模型的方法,具体的效果和应用可以DY搜索"军哥讲视觉",或者WX搜索"军哥讲视觉"

相关推荐
jkyy2014几秒前
AI健康医疗开放平台:企业健康业务的“新基建”
大数据·人工智能·科技·健康医疗
hy15687867 分钟前
coze编程-工作流-起起起---废(一句话生成工作流)
人工智能·coze·自动编程
brave and determined10 分钟前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录
Fuly102412 分钟前
MCP协议的简介和简单实现
人工智能·langchain
焦耳加热24 分钟前
湖南大学/香港城市大学《ACS Catalysis》突破:微波热冲击构筑异质结,尿素电氧化性能跃升
人工智能·科技·能源·制造·材料工程
这张生成的图像能检测吗33 分钟前
(论文速读)基于迁移学习的大型复杂结构冲击监测
人工智能·数学建模·迁移学习·故障诊断·结构健康监测·传感器应用·加权质心算法
源于花海38 分钟前
迁移学习的第一类方法:数据分布自适应(1)——边缘分布自适应
人工智能·机器学习·迁移学习·数据分布自适应
小北方城市网39 分钟前
鸿蒙6.0:生态质变与全场景智慧体验的全面跃升
人工智能·ai·鸿蒙6.0
呆萌很40 分钟前
Canny 边缘检测
人工智能
视界先声1 小时前
2025年GEO自动化闭环构建实践:监测工具选型与多平台反馈机制工程分享
大数据·人工智能·自动化