Relay IR的核心数据结构

Apache TVMRelay IR 中,基础节点(VarConstCallFunctionExpr)是构建计算图的核心数据结构。以下是对它们的详细解析,包括定义、作用、内部组成及相互关系:


1. Expr(表达式基类)

作用

  • 所有 Relay IR 节点的基类,提供统一的类型系统和遍历接口。
  • 支持递归访问、变换和类型检查。

关键组成

字段/方法 说明
checked_type_ 表达式的推断类型(如 TensorTypeTupleType)。
span 源代码位置信息(用于调试和错误报告)。
VisitAttrs(visitor) 递归访问所有属性和子节点(用于序列化、优化等)。
Mutate() 生成表达式的副本(用于变换和优化)。

子类关系

Expr Var Const Call Function Tuple Let If


2. Var(变量)

作用

  • 表示计算图中的 输入变量中间变量(符号化张量)。
  • 类似于深度学习模型中的输入占位符或中间激活值。

关键组成

字段 说明
name_hint 变量名称(字符串标识符,如 "x")。
type_annotation 变量的显式类型注解(可选,如 TensorType({1,3}, float32))。
vid 内部唯一 ID(用于优化和去重)。

示例

cpp 复制代码
// 定义一个浮点型张量变量
Var x("x", TensorType({1, 3}, DataType::Float(32)));

3. Const(常量)

作用

  • 表示 不可变的数据(如模型权重、超参数)。
  • 在计算图中作为叶子节点存在。

关键组成

字段 说明
data 存储的常量值(runtime::NDArrayrelay::ConstantNode)。
checked_type_ 常量的类型(通常从 data 自动推断)。

示例

cpp 复制代码
// 定义一个常量张量
NDArray weight = NDArray::Empty({3, 3}, DataType::Float(32), {kDLCPU, 0});
Const weight_const(weight);

4. Call(函数调用)

作用

  • 表示对 算子(Operator)函数(Function) 的调用。
  • 是构建计算图的核心节点(如 addconv2d)。

关键组成

字段 说明
op 调用的目标(OpFunctionGlobalVar)。
args 参数列表(Array<Expr>,可以是 VarConst 或其他 Call)。
attrs 调用的属性(如卷积的 stridespadding)。

示例

cpp 复制代码
// 调用加法算子
Expr a = Var("a", TensorType({1}, DataType::Float(32)));
Expr b = Var("b", TensorType({1}, DataType::Float(32)));
Expr add_call = Call(Op::Get("add"), {a, b});

5. Function(函数定义)

作用

  • 封装可复用的计算单元(类似 Lambda 表达式)。
  • 用于表示模型中的子图或复合算子(如 conv2d + relu 融合)。

关键组成

字段 说明
params 输入参数列表(Array<Var>)。
body 函数体的表达式(Expr)。
ret_type 返回值的类型(如 TensorType)。
type_params 泛型类型参数(支持多态,类似 C++ 模板)。

示例

cpp 复制代码
// 定义一个简单的加法函数
Var x("x", TensorType({1}, DataType::Float(32)));
Var y("y", TensorType({1}, DataType::Float(32)));
Expr body = Call(Op::Get("add"), {x, y});
Function add_func({x, y}, body, TensorType({1}, DataType::Float(32)));

6. 节点间的协作关系

计算图示例

复制代码
z = (x + y) * 2

对应的 Relay IR 结构:

  1. 变量xyVar 节点)。
  2. 常量2Const 节点)。
  3. 调用add(x, y)multiply(add_result, 2)Call 节点)。
  4. 函数 :封装整个计算(Function 节点)。

代码实现

cpp 复制代码
Var x("x", TensorType({1}, DataType::Float(32)));
Var y("y", TensorType({1}, DataType::Float(32)));
Expr add = Call(Op::Get("add"), {x, y});
Expr two = Const(NDArray::FromVector({2.0f}));
Expr mul = Call(Op::Get("multiply"), {add, two});
Function func({x, y}, mul, TensorType({1}, DataType::Float(32)));

7. 类型系统支持

所有 Expr 节点都关联类型信息:

  • Var/Const :通过 type_annotationchecked_type_ 指定张量类型。
  • Call :根据算子的类型规则推断返回类型(如 add(Tensor, Tensor) -> Tensor)。
  • Function :通过 ret_type 声明返回值类型。

总结

节点 角色 关键特性
Expr 所有节点的基类 提供类型检查和遍历接口。
Var 输入/中间变量 符号化表示,支持类型注解。
Const 常量数据 存储不可变值(如权重)。
Call 算子或函数调用 构建计算图的核心节点,依赖 opargs
Function 可复用的计算单元 封装参数、计算体和返回类型,支持多态。

这些基础节点共同构成了 Relay IR 的 静态计算图,通过组合它们可以表示复杂的深度学习模型,并为后续优化和代码生成提供基础。

相关推荐
Mintopia11 小时前
😎 HTTP/2 中的 HPACK 压缩原理全揭秘
前端·人工智能·aigc
阿里云大数据AI技术11 小时前
EMR AI 助手再升级:支持 Serverless StarRocks
人工智能
bing.shao11 小时前
golang 做AI任务链的优势和场景
开发语言·人工智能·golang
知乎的哥廷根数学学派11 小时前
基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
deephub11 小时前
Agentic Memory 实践:用 agents.md 实现 LLM 持续学习
人工智能·大语言模型·agent
chen_jared11 小时前
反对称矩阵的性质和几何意义
人工智能·算法·机器学习
NocoBase11 小时前
NocoBase 本周更新汇总:支持 Gemini-3 模型
人工智能·开源·零代码·无代码·版本更新
汇智信科11 小时前
智慧矿山和工业大数据解决方案“安全生产数据综合分析系统
大数据·人工智能·安全·智能算法·智慧矿山·工业大数据·汇智信科
雨大王51212 小时前
汽车工厂智能调度系统:自适应调度算法如何解决资源与任务匹配难题?
大数据·人工智能·汽车·制造
雨大王51212 小时前
缩短交付周期:汽车企业如何通过计划智能体实现高效协同?
大数据·人工智能·汽车·制造