深度学习3.1 线性回归

3.1.1 线性回归的基本概念

损失函数

梯度下降

3.1.2 向量化加速

python 复制代码
%matplotlib inline
import math
import time
import numpy as np
import torch
from d2l import torch as d2l

n = 1000000 #本机为了差距明显,选择数据较大,运行时间较长,可选择10000
a = torch.ones(n)
b = torch.ones(n)


class Timer:
    def __init__(self):
        self.times = []  # 存储每次测量的时间
        self.start()      # 初始化时自动开始计时

    def start(self):
        self.tik = time.time()  # 记录当前时间戳(开始时间)

    def stop(self):
        self.times.append(time.time() - self.tik)  # 计算并保存时间差
        return self.times[-1]  # 返回本次测量的时间

    def avg(self):
        return sum(self.times) / len(self.times)  # 平均耗时

    def sum(self):
        return sum(self.times)  # 总耗时

    def cumsum(self):
        return np.array(self.times).cumsum().tolist()  # 累计耗时(用于绘图)
python 复制代码
c = torch.zeros(n)      # 初始化全0张量 c(存储结果)
timer = Timer()         # 创建计时器实例
for i in range(n):
    c[i] = a[i] + b[i]  # 逐个元素相加(慢!)
print(f'{timer.stop():.5f} sec')

'19.59485 sec'

python 复制代码
timer.start()
d = a + b
f'{timer.stop():.5f} sec'

'0.00470 sec'

3.1.3 正态分布与平方损失

python 复制代码
import math
import numpy as np
from d2l import torch as d2l

def normal(x, mu, sigma):
    p = 1 / math.sqrt(2 * math.pi * sigma ** 2)  # 归一化系数
    return p * np.exp(-0.5 / sigma ** 2 * (x - mu) ** 2)  # 概率密度计算

x = np.arange(-7, 7, 0.01)  # 生成 [-7, 7) 区间内步长0.01的数组
params = [(0, 1), (0, 2), (3, 1)]  # (mu, sigma) 的组合 (均值, 标准差)

d2l.plot(
    x,  # x 轴数据
    [normal(x, mu, sigma) for mu, sigma in params],  # y 轴数据列表(三条曲线)
    xlabel='x',  # x 轴标签
    ylabel='p(x)',  # y 轴标签
    figsize=(4.5, 2.5),  # 图像尺寸(宽,高)
    legend=[f'mean {mu}, std {sigma}' for mu, sigma in params]  # 图例说明
)


x 是 NumPy 数组,np.exp 支持数组运算,而 math.exp 仅处理标量。

相关推荐
xiaoxiaode_shu1 分钟前
神经网络基础
人工智能·深度学习·神经网络
小小爱大王32 分钟前
AI 编码效率提升 10 倍的秘密:Prompt 工程 + 工具链集成实战
java·javascript·人工智能
盼小辉丶33 分钟前
使用CNN构建VAE
深度学习·神经网络·cnn·生成模型
zzzyulin40 分钟前
huggingface transformers调试问题--加载本地路径模型时pdb断点消失
python·transformer
教练、我想打篮球43 分钟前
12 pyflink 的一个基础使用, 以及环境相关
python·flink·pyflink
飞翔的佩奇1 小时前
【完整源码+数据集+部署教程】【天线&运输】直升机战机类型识别目标检测系统源码&数据集全套:改进yolo11-CSP-EDLAN
前端·python·yolo·计算机视觉·数据集·yolo11·直升机战机类型识别目标检测系统
C嘎嘎嵌入式开发1 小时前
(21)100天python从入门到拿捏《XML 数据解析》
xml·开发语言·python
蓝博AI1 小时前
基于卷积神经网络的香蕉成熟度识别系统,resnet50,vgg16,resnet34【pytorch框架,python代码】
人工智能·pytorch·python·神经网络·cnn
小白银子1 小时前
零基础从头教学Linux(Day 54)
linux·windows·python
不爱搬砖的码农2 小时前
宝塔面板部署Django:使用Unix Socket套接字通信的完整教程(附核心配置与问题排查)
python·django·unix