深度学习3.1 线性回归

3.1.1 线性回归的基本概念

损失函数

梯度下降

3.1.2 向量化加速

python 复制代码
%matplotlib inline
import math
import time
import numpy as np
import torch
from d2l import torch as d2l

n = 1000000 #本机为了差距明显,选择数据较大,运行时间较长,可选择10000
a = torch.ones(n)
b = torch.ones(n)


class Timer:
    def __init__(self):
        self.times = []  # 存储每次测量的时间
        self.start()      # 初始化时自动开始计时

    def start(self):
        self.tik = time.time()  # 记录当前时间戳(开始时间)

    def stop(self):
        self.times.append(time.time() - self.tik)  # 计算并保存时间差
        return self.times[-1]  # 返回本次测量的时间

    def avg(self):
        return sum(self.times) / len(self.times)  # 平均耗时

    def sum(self):
        return sum(self.times)  # 总耗时

    def cumsum(self):
        return np.array(self.times).cumsum().tolist()  # 累计耗时(用于绘图)
python 复制代码
c = torch.zeros(n)      # 初始化全0张量 c(存储结果)
timer = Timer()         # 创建计时器实例
for i in range(n):
    c[i] = a[i] + b[i]  # 逐个元素相加(慢!)
print(f'{timer.stop():.5f} sec')

'19.59485 sec'

python 复制代码
timer.start()
d = a + b
f'{timer.stop():.5f} sec'

'0.00470 sec'

3.1.3 正态分布与平方损失

python 复制代码
import math
import numpy as np
from d2l import torch as d2l

def normal(x, mu, sigma):
    p = 1 / math.sqrt(2 * math.pi * sigma ** 2)  # 归一化系数
    return p * np.exp(-0.5 / sigma ** 2 * (x - mu) ** 2)  # 概率密度计算

x = np.arange(-7, 7, 0.01)  # 生成 [-7, 7) 区间内步长0.01的数组
params = [(0, 1), (0, 2), (3, 1)]  # (mu, sigma) 的组合 (均值, 标准差)

d2l.plot(
    x,  # x 轴数据
    [normal(x, mu, sigma) for mu, sigma in params],  # y 轴数据列表(三条曲线)
    xlabel='x',  # x 轴标签
    ylabel='p(x)',  # y 轴标签
    figsize=(4.5, 2.5),  # 图像尺寸(宽,高)
    legend=[f'mean {mu}, std {sigma}' for mu, sigma in params]  # 图例说明
)


x 是 NumPy 数组,np.exp 支持数组运算,而 math.exp 仅处理标量。

相关推荐
子夜江寒6 小时前
Python 学习-Day8-执行其他应用程序
python·学习
背心2块钱包邮6 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水6 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊7 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
PixelMind7 小时前
【超分辨率专题】FlashVSR:单步Diffusion的再次提速,实时视频超分不是梦!
深度学习·音视频·超分辨率·vsr
湘-枫叶情缘7 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
噜~噜~噜~7 小时前
偏导数和全导数的个人理解
深度学习·偏导数·梯度·全导数
一个散步者的梦7 小时前
一键生成数据分析报告:Python的ydata-profiling模块(汉化)
python·数据挖掘·数据分析
Aaron15887 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
黑客思维者7 小时前
Python大规模数据处理OOM突围:从迭代器原理到TB级文件实战优化
开发语言·python·github·迭代器·oom