蓝桥杯之递归二

1.数的划分

题目描述

将整数 nn 分成 kk 份,且每份不能为空,任意两份不能相同(不考虑顺序)。

例如:n=7,k=3n=7,k=3,下面三种分法被认为是相同的。

1,1,5;1,5,1;5,1,1;1,1,5;1,5,1;5,1,1;

问有多少种不同的分法。

输入描述

输入一行,22 个整数 n,k (6≤n≤200,2≤k≤6)n,k (6≤n≤200,2≤k≤6)。

输出描述

输出一个整数,即不同的分法。

输入输出样例

示例 1

输入

复制代码
7 3

输出

复制代码
4

递归解题思路

看到"整数分拆"问题,直接想到"递归"

递归的核心思想:将大问题分解为小问题,通过解决小问题来构建大问题的解。

递归的终止条件:

  1. nm 为 0,或者 n 小于 m 时,分拆方式数量为 0。

  2. m 为 1 或 n 等于 m 时,分拆方式数量为 1。

递归的分解逻辑:

  1. 不选1的情况 :将每个数字减去1,问题转化为 f(n - m, m)

  2. 选1的情况 :其中一个数字是1,问题转化为 f(n - 1, m - 1)

最终结果是两种情况的和:f(n - m, m) + f(n - 1, m - 1)

解题步骤模板:

复制代码
public static int f(int n, int m) {
    // 边界条件
    if (n == 0 || m == 0 || n < m) {
        return 0;
    }
    if (m == 1 || n == m) {
        return 1;
    }
    // 递归逻辑
    else {
        return f(n - m, m) + f(n - 1, m - 1);
    }
}

示例代码模板:

复制代码
import java.util.Scanner;

public class Main {
    // 递归函数,用于计算将整数 n 分成 m 份的方式数
    public static int f(int n, int m) {
        // 边界条件:当 n 或 m 为 0,或者 n 小于 m 时,分拆方式数量为 0
        if (n == 0 || m == 0 || n < m) {
            return 0;
        }
        // 当 m 为 1 或 n 等于 m 时,分拆方式数量为 1
        if (m == 1 || n == m) {
            return 1;
        }
        // 递归逻辑:
        // 1. 不选1的情况:将每个数字减去1,问题转化为 f(n - m, m)
        // 2. 选1的情况:其中一个数字是1,问题转化为 f(n - 1, m - 1)
        // 总分拆方式数量为两者的和
        else {
            return f(n - m, m) + f(n - 1, m - 1);
        }
    }

    // 主函数,程序入口
    public static void main(String[] args) {
        // 创建 Scanner 对象,用于读取用户输入
        Scanner sc = new Scanner(System.in);
        // 读取用户输入的整数 n
        int n = sc.nextInt();
        // 读取用户输入的整数 k
        int k = sc.nextInt();
        // 调用递归函数 f(n, k),计算分拆方式数量
        // 输出结果
        System.out.println(f(n, k));
    }
}

思维导图:

训练方法:

  1. 理解递归思想:仔细阅读代码,确保理解递归的终止条件和递归逻辑。

  2. 手算小例子 :选择一个小的例子(如 n = 4m = 2),手动计算递归调用的过程,然后用代码验证结果。

  3. 调试和优化:观察递归调用的深度和次数,尝试用记忆化技术优化代码,避免重复计算。

  4. 扩展应用:将代码逻辑应用到其他类似问题,如"将整数分成任意多份"的问题

2.数的计算

题目描述

输入一个自然数 n (n≤1000)n (n≤1000),我们对此自然数按照如下方法进行处理:

  1. 不作任何处理;

  2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半;

  3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止。

问总共可以产生多少个数。

输入描述

输入一个正整数 nn。

输出描述

输出一个整数,表示答案。

输入输出样例

示例 1

输入

复制代码
6

输出

复制代码
6

递归解题思路

看到"整数分拆"问题,直接想到"递归"

递归的核心思想:将大问题分解为小问题,通过解决小问题来构建大问题的解。

递归的终止条件:当 n == 1 时,分拆方式数量为 1。

递归的分解逻辑:通过遍历从1到n/2的数i,每次将当前数i分拆,并递归计算i的分拆方式。

解题步骤模板:

复制代码
public static void f(int n) {
    // 递归终止条件
    if (n == 1) {
        return;
    }

    // 遍历 i 从 1 到 n/2,计算分拆方式
    for (int i = 1; i <= n / 2; i++) {
        // 每次分拆时,增加结果计数
        res++;
        // 递归计算更小的整数 i 的分拆方式
        f(i);
    }
}

示例代码模板:

复制代码
import java.util.Scanner;

public class Main {
    // 全局变量,用于存储最终结果
    static int res = 1;

    // 递归函数,用于计算整数 n 的分拆方式数量
    public static void f(int n) {
        // 递归终止条件:当 n == 1 时,分拆方式数量为 1
        if (n == 1) {
            return;
        }

        // 遍历 i 从 1 到 n/2,计算分拆方式
        for (int i = 1; i <= n / 2; i++) {
            // 每次分拆时,增加结果计数
            res++;
            // 递归计算更小的整数 i 的分拆方式
            f(i);
        }
    }

    // 主函数,程序入口
    public static void main(String[] args) {
        // 创建 Scanner 对象,用于读取用户输入
        Scanner sc = new Scanner(System.in);
        // 读取用户输入的整数 n
        int n = sc.nextInt();
        // 调用递归函数 f(n),计算分拆方式数量
        f(n);
        // 输出最终结果
        System.out.println(res);
    }
}

思维导图:

训练方法:

  1. 理解递归思想:仔细阅读代码,确保理解递归的终止条件和递归逻辑。

  2. 手算小例子 :选择一个小的例子(如 n = 4),手动计算递归调用的过程,然后用代码验证结果。

  3. 调试和优化:观察递归调用的深度和次数,尝试用记忆化技术优化代码,避免重复计算。

  4. 扩展应用:将代码逻辑应用到其他类似问题,如"将整数分成特定数量的份"或"将整数分成不相等的份"的问题。

自学蓝桥杯笔记,希望我们可以一起学习!

相关推荐
冷雨夜中漫步7 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴8 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
JH30738 小时前
SpringBoot 优雅处理金额格式化:拦截器+自定义注解方案
java·spring boot·spring
颜酱9 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919109 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878389 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
Coder_Boy_9 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
Gain_chance9 小时前
34-学习笔记尚硅谷数仓搭建-DWS层最近一日汇总表建表语句汇总
数据仓库·hive·笔记·学习·datagrip
DuHz9 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
invicinble10 小时前
对tomcat的提供的功能与底层拓扑结构与实现机制的理解
java·tomcat