26.OpenCV形态学操作

OpenCV形态学操作

形态学操作(Morphological Operations)源自二值图像处理,主要用于分析和处理图像中的结构元素,对图像进行去噪、提取边缘、分割等预处理步骤。OpenCV库中提供了丰富的形态学函数,常见的包括:

  • 膨胀(Dilation)
  • 腐蚀(Erosion)
  • 开操作(Opening)
  • 闭操作(Closing)
  • 形态学梯度(Morphological Gradient)
  • 顶帽(Top Hat)
  • 黑帽(Black Hat)

下面将逐一介绍这些操作的原理、用途,以及在 C++ 中的使用方法。

1. 基础概念:结构元素(Kernel)

形态学操作的核心是"结构元素":一个二值矩阵,用来扫描图像并决定像素的处理方式。在 OpenCV 中,我们通常使用 getStructuringElement 来创建常见形状的结构元素:

cpp 复制代码
// 创建 5×5 的矩形结构元素
Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5));
// 创建 3×3 的椭圆结构元素
Mat kernelEllipse = getStructuringElement(MORPH_ELLIPSE, Size(3, 3));
// 创建 7×7 的交叉形结构元素
Mat kernelCross = getStructuringElement(MORPH_CROSS, Size(7, 7));

2. 膨胀(Dilation)与腐蚀(Erosion)

2.1 腐蚀(Erosion)

  • 原理:用结构元素"擦除"边缘,使前景对象变小。
  • 用途:去除小噪点、断开细小的连通区域。
cpp 复制代码
Mat src = imread("input.jpg", IMREAD_GRAYSCALE);
Mat eroded;
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
erode(src, eroded, kernel);

如上图腐蚀可以把白点去除

2.2 膨胀(Dilation)

  • 原理:用结构元素"扩展"边缘,使前景对象变大。
  • 用途:填补小孔洞、连接相邻的对象。
cpp 复制代码
Mat src = imread("input.jpg", IMREAD_GRAYSCALE);
Mat dilated;
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
dilate(src, dilated, kernel);

如上图膨胀会把数字A中的小黑点去除

3. 开操作(Opening)与闭操作(Closing)

对腐蚀和膨胀的组合操作

3.1 开操作(Opening)

  • 定义:先腐蚀后膨胀(Erosion → Dilation)。
  • 效果:去除小的光斑噪点,同时保持整体轮廓不变。
cpp 复制代码
Mat opened;
morphologyEx(src, opened, MORPH_OPEN, kernel);

开操作对比腐蚀,去除白点后保证中间黑点和字母A大小不变

3.2 闭操作(Closing)

  • 定义:先膨胀后腐蚀(Dilation → Erosion)。
  • 效果:填补前景对象的小孔洞,同时保持整体轮廓不变。
cpp 复制代码
Mat closed;
morphologyEx(src, closed, MORPH_CLOSE, kernel);

闭操作对比膨胀,其去除中间黑点同时保证外围白点和字母A大小不变

4. 形态学梯度(Morphological Gradient)

  • 定义:膨胀结果与腐蚀结果之间的差值:

    G r a d i e n t = D i l a t i o n ( s r c ) − E r o s i o n ( s r c ) Gradient=Dilation(src)−Erosion(src) Gradient=Dilation(src)−Erosion(src)

  • 用途:突出获取图像边缘。

cpp 复制代码
Mat gradient;
morphologyEx(src, gradient, MORPH_GRADIENT, kernel);

突出图像边缘

5. 顶帽(Top Hat)与黑帽(Black Hat)

5.1 顶帽(Top Hat)

  • 定义 :原图像与开操作结果的差值: T o p H a t = s r c − O p e n i n g ( s r c ) TopHat=src−Opening(src) TopHat=src−Opening(src)
  • 用途:提取比背景亮的细小区域(小光斑)。
cpp 复制代码
Mat tophat;
morphologyEx(src, tophat, MORPH_TOPHAT, kernel);

突出背景亮点

5.2 黑帽(Black Hat)

  • 定义 :闭操作结果与原图像的差值: B l a c k H a t = C l o s i n g ( s r c ) − s r c BlackHat=Closing(src)−src BlackHat=Closing(src)−src
  • 用途:提取比背景暗的细小区域(小暗点)。
cpp 复制代码
Mat blackhat;
morphologyEx(src, blackhat, MORPH_BLACKHAT, kernel);

突出中间黑点区域

6. 小结

  • 腐蚀 / 膨胀:最基本的形态学操作,用于缩小或扩展前景区域。
  • 开 / 闭操作:腐蚀与膨胀的组合,开操作用于去除小噪点,闭操作用于填补小孔洞。
  • 形态学梯度:用于提取边缘信息。
  • 顶帽 / 黑帽:分别用于突出小的亮区域与暗区域。

掌握这些形态学操作后配合掩膜,你可以在图像预处理、特征提取、目标分割等任务中如虎添翼。

相关推荐
多巴胺与内啡肽.1 分钟前
OpenCV进阶操作:人脸检测、微笑检测
人工智能·opencv·计算机视觉
Wnq100724 分钟前
基于 NanoDet 的工厂巡检机器人目标识别系统研究与实现
人工智能·机器学习·计算机视觉·目标跟踪·机器人·巡检机器人
一年春又来11 分钟前
AI-02a5a6.神经网络-与学习相关的技巧-批量归一化
人工智能·神经网络·学习
kovlistudio16 分钟前
机器学习第十讲:异常值检测 → 发现身高填3米的不合理数据
人工智能·机器学习
马拉AI20 分钟前
解锁Nature发文小Tips:LSTM、CNN与Attention的创新融合之路
人工智能·cnn·lstm
sufu106521 分钟前
SpringAI更新:废弃tools方法、正式支持DeepSeek!
人工智能·后端
知舟不叙35 分钟前
基于OpenCV中的图像拼接方法详解
人工智能·opencv·计算机视觉·图像拼接
Jamence39 分钟前
多模态大语言模型arxiv论文略读(七十五)
人工智能·语言模型·自然语言处理
点云SLAM42 分钟前
Python中列表(list)知识详解(2)和注意事项以及应用示例
开发语言·人工智能·python·python学习·数据结果·list数据结果
放飞自我的Coder42 分钟前
【NLP 计算句子之间的BLEU和ROUGE分数】
人工智能·自然语言处理