1. 项目概述
1.1 项目背景
随着人机交互技术的快速发展,传统的键盘、鼠标等输入设备已经不能满足人们对自然、直观交互的需求。手势识别作为一种非接触式的人机交互方式,具有操作自然、交互直观的特点,在智能家居、游戏控制、虚拟现实等领域有着广泛的应用前景。
本项目旨在开发一个基于计算机视觉的手势识别控制系统,通过摄像头捕获用户的手部动作,实时识别手势类型,并将识别结果转化为相应的控制命令,实现对计算机或其他设备的非接触式控制。
1.2 项目目标
- 实现实时手部检测和跟踪
- 识别至少10种常用手势(如点击、滑动、抓取等)
- 将识别的手势转化为控制命令
- 开发一个演示应用,展示手势控制的实际效果
- 系统响应时间控制在100ms以内,识别准确率达到90%以上
1.3 技术路线
本项目采用Python作为主要开发语言,结合OpenCV、MediaPipe、TensorFlow等开源库实现手势识别功能。系统架构分为四个主要模块:图像采集模块、手部检测模块、手势识别模块和控制转换模块。
2. 系统设计
2.1 系统架构
系统整体架构如下:
- 图像采集模块:负责从摄像头获取视频流,并进行预处理
- 手部检测模块:从图像中检测和跟踪手部位置
- 手势识别模块:分析手部姿态,识别具体手势类型
- 控制转换模块:将识别的手势转换为具体的控制命令
- 应用接口模块:提供API接口,供其他应用调用
2.2 核心技术
2.2.1 手部检测技术
本项目使用MediaPipe Hands模型进行手部检测。MediaPipe是Google开源的多媒体机器学习框架,其Hands模型可以实时检测手部位置,并提取21个关键点,包括手腕和各个手指关节点。
python
import mediapipe as mp
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
static_image_mode=False,
max_num_hands=2,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
2.2.2 手势识别算法
手势识别采用两种方法:
- 基于规则的方法:通过分析手部关键点之间的相对位置和角度,定义一系列规则来识别基本手势。
- 基于深度学习的方法:使用卷积神经网络(CNN)或长短期记忆网络(LSTM)模型,通过学习手部关键点序列的时空特征,识别更复杂的动态手势。
3. 系统实现
3.1 开发环境
- 操作系统:Windows 10/11 或 Ubuntu 20.04
- 编程语言:Python 3.8+
- 主要依赖库 :
- OpenCV 4.5.0+:图像处理和计算机视觉功能
- MediaPipe 0.8.9+:手部检测和关键点提取
- TensorFlow 2.5.0+:深度学习模型训练和推理
- NumPy 1.20.0+:数值计算
- PyAutoGUI 0.9.52+:模拟鼠标和键盘操作
3.2 图像采集模块
图像采集模块负责从摄像头获取视频流,并进行必要的预处理,如调整分辨率、降噪和光照补偿等。
python
import cv2
class ImageCapture:
def __init__(self, camera_id=0, width=640, height=480):
self.cap = cv2.VideoCapture(camera_id)
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
def get_frame(self):
ret, frame = self.cap.read()
if not ret:
return None
# 图像预处理
frame = cv2.flip(frame, 1) # 水平翻转,使镜像更直观
frame = cv2.GaussianBlur(frame, (5, 5), 0) # 高斯模糊降噪
return frame
def release(self):
self.cap.release()
3.3 手部检测模块
手部检测模块使用MediaPipe Hands模型检测手部位置,并提取21个关键点。
python
import mediapipe as mp
import numpy as np
class HandDetector:
def __init__(self, static_mode=False, max_hands=2, detection_confidence=0.5, tracking_confidence=0.5):
self.mp_hands = mp.solutions.hands
self.hands = self.mp_hands.Hands(
static_image_mode=static_mode,
max_num_hands=max_hands,
min_detection_confidence=detection_confidence,
min_tracking_confidence=tracking_confidence
)
self.mp_draw = mp.solutions.drawing_utils
self.landmark_names = [
'WRIST', 'THUMB_CMC', 'THUMB_MCP', 'THUMB_IP', 'THUMB_TIP',
'INDEX_FINGER_MCP', 'INDEX_FINGER_PIP', 'INDEX_FINGER_DIP', 'INDEX_FINGER_TIP',
'MIDDLE_FINGER_MCP', 'MIDDLE_FINGER_PIP', 'MIDDLE_FINGER_DIP', 'MIDDLE_FINGER_TIP',
'RING_FINGER_MCP', 'RING_FINGER_PIP', 'RING_FINGER_DIP', 'RING_FINGER_TIP',
'PINKY_MCP', 'PINKY_PIP', 'PINKY_DIP', 'PINKY_TIP'
]
def find_hands(self, frame, draw=True):
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(rgb_frame)
hands_data = []
if self.results.multi_hand_landmarks:
for hand_landmarks in self.results.multi_hand_landmarks:
if draw:
self.mp_draw.draw_landmarks(
frame, hand_landmarks, self.mp_hands.HAND_CONNECTIONS)
# 提取关键点坐标
landmarks = []
for lm in hand_landmarks.landmark:
h, w, c = frame.shape
cx, cy = int(lm.x * w), int(lm.y * h)
landmarks.append((cx, cy))
hands_data.append(landmarks)
return frame, hands_data
def get_landmark_name(self, index):
return self.landmark_names[index]
3.4 手势识别模块
手势识别模块分为两部分:基于规则的静态手势识别和基于深度学习的动态手势识别。
3.4.1 基于规则的静态手势识别
静态手势识别通过分析手部关键点之间的相对位置和角度,定义一系列规则来识别基本手势。
python
class StaticGestureRecognizer:
def __init__(self):
self.gestures = {
'open_palm': self._is_open_palm,
'fist': self._is_fist,
'pointing': self._is_pointing,
'victory': self._is_victory,
'thumbs_up': self._is_thumbs_up,
'ok': self._is_ok
}
def recognize(self, landmarks):
results = {}
for gesture_name, gesture_func in self.gestures.items():
results[gesture_name] = gesture_func(landmarks)
# 返回置信度最高的手势
max_gesture = max(results.items(), key=lambda x: x[1])
if max_gesture[1] > 0.7: # 置信度阈值
return max_gesture[0]
return 'unknown'
def _is_open_palm(self, landmarks):
# 检查所有手指是否伸直
fingers_extended = self._count_extended_fingers(landmarks)
if fingers_extended == 5:
return 0.95
return 0.0
def _is_fist(self, landmarks):
# 检查所有手指是否弯曲
fingers_extended = self._count_extended_fingers(landmarks)
if fingers_extended == 0:
return 0.95
return 0.0
def _is_pointing(self, landmarks):
# 检查食指是否伸直,其他手指弯曲
thumb_extended = self._is_finger_extended(landmarks, 'thumb')
index_extended = self._is_finger_extended(landmarks, 'index')
middle_extended = self._is_finger_extended(landmarks, 'middle')
ring_extended = self._is_finger_extended(landmarks, 'ring')
pinky_extended = self._is_finger_extended(landmarks, 'pinky')
if not thumb_extended and index_extended and not middle_extended and not ring_extended and not pinky_extended:
return 0.9
return 0.0
# 其他手势识别方法...
def _count_extended_fingers(self, landmarks):
count = 0
fingers = ['thumb', 'index', 'middle', 'ring', 'pinky']
for finger in fingers:
if self._is_finger_extended(landmarks, finger):
count += 1
return count
def _is_finger_extended(self, landmarks, finger):
# 根据不同手指的关键点判断是否伸直
# 这里简化处理,实际应考虑手指关节角度
if finger == 'thumb':
return self._calculate_distance(landmarks[4], landmarks[0]) > self._calculate_distance(landmarks[3], landmarks[0])
elif finger == 'index':
return self._calculate_distance(landmarks[8], landmarks[0]) > self._calculate_distance(landmarks[7], landmarks[0])
elif finger == 'middle':
return self._calculate_distance(landmarks[12], landmarks[0]) > self._calculate_distance(landmarks[11], landmarks[0])
elif finger == 'ring':
return self._calculate_distance(landmarks[16], landmarks[0]) > self._calculate_distance(landmarks[15], landmarks[0])
elif finger == 'pinky':
return self._calculate_distance(landmarks[20], landmarks[0]) > self._calculate_distance(landmarks[19], landmarks[0])
def _calculate_distance(self, p1, p2):
return ((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5
3.4.2 特征提取
为了实现更复杂的手势识别,我们需要从手部关键点提取有效特征。本系统采用以下特征提取方法:
- 几何特征:计算手指关节角度、指尖与手腕的相对距离、手指间的角度等
- HOG特征:提取手部区域的方向梯度直方图特征
- 时序特征:对于动态手势,提取关键点随时间变化的轨迹特征
python
class GestureFeatureExtractor:
def __init__(self):
pass
def extract_geometric_features(self, landmarks):
"""提取几何特征"""
features = []
# 计算所有关键点到手腕的距离
wrist = landmarks[0]
for i in range(1, 21):
dist = self._calculate_distance(landmarks[i], wrist)
features.append(dist)
# 计算手指关节角度
# 拇指角度
thumb_angle = self._calculate_angle(landmarks[1], landmarks[2], landmarks[4])
features.append(thumb_angle)
# 食指角度
index_angle = self._calculate_angle(landmarks[5], landmarks[6], landmarks[8])
features.append(index_angle)
# 中指角度
middle_angle = self._calculate_angle(landmarks[9], landmarks[10], landmarks[12])
features.append(middle_angle)
# 无名指角度
ring_angle = self._calculate_angle(landmarks[13], landmarks[14], landmarks[16])
features.append(ring_angle)
# 小指角度
pinky_angle = self._calculate_angle(landmarks[17], landmarks[18], landmarks[20])
features.append(pinky_angle)
# 计算指尖之间的距离
fingertips = [4, 8, 12, 16, 20] # 指尖索引
for i in range(len(fingertips)):
for j in range(i+1, len(fingertips)):
dist = self._calculate_distance(landmarks[fingertips[i]], landmarks[fingertips[j]])
features.append(dist)
return np.array(features)
def extract_hog_features(self, frame, hand_bbox):
"""提取HOG特征"""
import cv2
# 裁剪手部区域
x, y, w, h = hand_bbox
hand_roi = frame[y:y+h, x:x+w]
# 调整大小为固定尺寸
hand_roi = cv2.resize(hand_roi, (64, 64))
# 计算HOG特征
hog = cv2.HOGDescriptor((64, 64), (16, 16), (8, 8), (8, 8), 9)
hog_features = hog.compute(hand_roi)
return hog_features.flatten()
def extract_temporal_features(self, landmark_history):
"""提取时序特征"""
# 计算关键点的运动轨迹
trajectory_features = []
# 使用最近10帧的关键点
if len(landmark_history) < 10:
return np.array([]) # 帧数不足,返回空特征
recent_frames = landmark_history[-10:]
# 计算指尖的运动轨迹
fingertips = [4, 8, 12, 16, 20] # 指尖索引
for tip_idx in fingertips:
# 提取该指尖在所有帧中的位置
tip_positions = [frame[tip_idx] for frame in recent_frames]
# 计算连续帧之间的位移
for i in range(1, len(tip_positions)):
dx = tip_positions[i][0] - tip_positions[i-1][0]
dy = tip_positions[i][1] - tip_positions[i-1][1]
trajectory_features.append(dx)
trajectory_features.append(dy)
return np.array(trajectory_features)
def _calculate_distance(self, p1, p2):
return ((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5
def _calculate_angle(self, p1, p2, p3):
"""计算三点形成的角度"""
import math
# 计算向量
v1 = (p1[0] - p2[0], p1[1] - p2[1])
v2 = (p3[0] - p2[0], p3[1] - p2[1])
# 计算点积
dot_product = v1[0] * v2[0] + v1[1] * v2[1]
# 计算向量长度
v1_length = (v1[0] ** 2 + v1[1] ** 2) ** 0.5
v2_length = (v2[0] ** 2 + v2[1] ** 2) ** 0.5
# 计算角度(弧度)
angle_rad = math.acos(dot_product / (v1_length * v2_length))
# 转换为角度
angle_deg = angle_rad * 180 / math.pi
return angle_deg
3.4.3 基于深度学习的动态手势识别
动态手势识别采用深度学习方法,使用LSTM模型捕捉手部关键点的时序特征。
python
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
class DynamicGestureRecognizer:
def __init__(self, num_classes=10, sequence_length=30, num_landmarks=21):
self.num_classes = num_classes
self.sequence_length = sequence_length
self.num_landmarks = num_landmarks
self.model = self._build_model()
self.gesture_buffer = []
self.gesture_names = [
'swipe_right', 'swipe_left', 'swipe_up', 'swipe_down',
'circle', 'zoom_in', 'zoom_out', 'wave', 'grab', 'release'
]
def _build_model(self):
"""构建LSTM模型"""
model = Sequential()
model.add(LSTM(64, return_sequences=True, input_shape=(self.sequence_length, self.num_landmarks * 2)))
model.add(LSTM(128, return_sequences=False))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dense(self.num_classes, activation='softmax'))
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
return model
def load_model(self, model_path):
"""加载预训练模型"""
self.model = tf.keras.models.load_model(model_path)
def add_to_buffer(self, landmarks):
"""将当前帧的关键点添加到缓冲区"""
# 将关键点平展为一维数组
flattened = []
for lm in landmarks:
flattened.extend([lm[0], lm[1]]) # 只使用x和y坐标
self.gesture_buffer.append(flattened)
# 保持缓冲区大小为序列长度
if len(self.gesture_buffer) > self.sequence_length:
self.gesture_buffer.pop(0)
def predict(self):
"""预测当前缓冲区中的手势"""
if len(self.gesture_buffer) < self.sequence_length:
return None, 0.0 # 帧数不足,无法预测
# 准备输入数据
sequence = np.array([self.gesture_buffer])
# 预测
prediction = self.model.predict(sequence)[0]
gesture_index = np.argmax(prediction)
confidence = prediction[gesture_index]
# 置信度阈值过滤
if confidence < 0.7:
return None, confidence
return self.gesture_names[gesture_index], confidence
def train(self, X_train, y_train, epochs=50, batch_size=32, validation_split=0.2):
"""训练模型"""
history = self.model.fit(
X_train, y_train,
epochs=epochs,
batch_size=batch_size,
validation_split=validation_split
)
return history
def save_model(self, model_path):
"""保存模型"""
self.model.save(model_path)
3.4.4 集成手势识别器
集成静态和动态手势识别器,实现完整的手势识别功能。
python
class GestureRecognizer:
def __init__(self, static_model_path=None, dynamic_model_path=None):
self.static_recognizer = StaticGestureRecognizer()
self.dynamic_recognizer = DynamicGestureRecognizer()
self.feature_extractor = GestureFeatureExtractor()
self.landmark_history = []
# 加载预训练模型(如果提供)
if dynamic_model_path:
self.dynamic_recognizer.load_model(dynamic_model_path)
def process_frame(self, frame, hands_data):
"""处理当前帧,识别手势"""
if not hands_data:
return None, None # 未检测到手
# 只处理第一只检测到的手
landmarks = hands_data[0]
# 保存关键点历史
self.landmark_history.append(landmarks)
if len(self.landmark_history) > 30: # 保持最近30帧
self.landmark_history.pop(0)
# 静态手势识别
static_gesture = self.static_recognizer.recognize(landmarks)
# 动态手势识别
self.dynamic_recognizer.add_to_buffer(landmarks)
dynamic_gesture, confidence = self.dynamic_recognizer.predict()
# 组合静态和动态手势结果
if dynamic_gesture:
return dynamic_gesture, 'dynamic' # 优先返回动态手势
else:
return static_gesture, 'static' # 如果没有检测到动态手势,返回静态手势
3.5 控制转换模块
控制转换模块负责将识别到的手势转换为具体的控制命令,如鼠标移动、点击、滑动等。
python
import pyautogui
class GestureController:
def __init__(self):
self.prev_gesture = None
self.gesture_count = 0 # 连续检测到同一手势的次数
self.screen_width, self.screen_height = pyautogui.size()
self.cursor_smoothing = 0.5 # 光标平滑因子
self.prev_cursor_pos = None
# 手势到命令的映射
self.static_gesture_commands = {
'pointing': self._control_cursor,
'fist': self._click,
'victory': self._right_click,
'open_palm': self._stop_tracking,
'thumbs_up': self._scroll_up,
'ok': self._scroll_down
}
self.dynamic_gesture_commands = {
'swipe_right': self._swipe_right,
'swipe_left': self._swipe_left,
'swipe_up': self._swipe_up,
'swipe_down': self._swipe_down,
'circle': self._circle_gesture,
'zoom_in': self._zoom_in,
'zoom_out': self._zoom_out,
'wave': self._alt_tab,
'grab': self._grab,
'release': self._release
}
def process_gesture(self, gesture, gesture_type, hand_landmarks):
"""处理识别到的手势并执行相应命令"""
if gesture is None or gesture == 'unknown':
self.prev_gesture = None
self.gesture_count = 0
return
# 连续性检测,减少误识别
if gesture == self.prev_gesture:
self.gesture_count += 1
else:
self.prev_gesture = gesture
self.gesture_count = 1
# 只有连续检测到同一手势超过3次才执行命令
if self.gesture_count < 3 and gesture != 'pointing': # 光标控制需要实时响应
return
# 根据手势类型执行相应命令
if gesture_type == 'static' and gesture in self.static_gesture_commands:
self.static_gesture_commands[gesture](hand_landmarks)
elif gesture_type == 'dynamic' and gesture in self.dynamic_gesture_commands:
self.dynamic_gesture_commands[gesture](hand_landmarks)
def _control_cursor(self, landmarks):
"""使用食指控制鼠标光标"""
# 使用食指指尖作为光标位置
index_tip = landmarks[8]
# 将手部坐标映射到屏幕坐标
screen_x = int(index_tip[0] * 1.5) # 缩放因子,使得手部小范围移动可以覆盖全屏
screen_y = int(index_tip[1] * 1.5)
# 平滑光标移动
if self.prev_cursor_pos:
smooth_x = int(self.prev_cursor_pos[0] * (1 - self.cursor_smoothing) + screen_x * self.cursor_smoothing)
smooth_y = int(self.prev_cursor_pos[1] * (1 - self.cursor_smoothing) + screen_y * self.cursor_smoothing)
pyautogui.moveTo(smooth_x, smooth_y)
self.prev_cursor_pos = (smooth_x, smooth_y)
else:
pyautogui.moveTo(screen_x, screen_y)
self.prev_cursor_pos = (screen_x, screen_y)
def _click(self, landmarks):
"""执行鼠标左键点击"""
pyautogui.click()
def _right_click(self, landmarks):
"""执行鼠标右键点击"""
pyautogui.rightClick()
def _scroll_up(self, landmarks):
"""向上滚动"""
pyautogui.scroll(10) # 正值表示向上滚动
def _scroll_down(self, landmarks):
"""向下滚动"""
pyautogui.scroll(-10) # 负值表示向下滚动
def _stop_tracking(self, landmarks):
"""暂停跟踪"""
self.prev_cursor_pos = None
# 动态手势命令
def _swipe_right(self, landmarks):
"""向右滑动手势命令"""
pyautogui.hotkey('alt', 'right') # 浏览器前进
def _swipe_left(self, landmarks):
"""向左滑动手势命令"""
pyautogui.hotkey('alt', 'left') # 浏览器后退
def _swipe_up(self, landmarks):
"""向上滑动手势命令"""
pyautogui.hotkey('home') # 滚动到页面顶部
def _swipe_down(self, landmarks):
"""向下滑动手势命令"""
pyautogui.hotkey('end') # 滚动到页面底部
def _circle_gesture(self, landmarks):
"""圆圈手势命令"""
pyautogui.hotkey('f5') # 刷新页面
def _zoom_in(self, landmarks):
"""放大手势命令"""
pyautogui.hotkey('ctrl', '+')
def _zoom_out(self, landmarks):
"""缩小手势命令"""
pyautogui.hotkey('ctrl', '-')
def _alt_tab(self, landmarks):
"""切换程序"""
pyautogui.hotkey('alt', 'tab')
def _grab(self, landmarks):
"""抓取手势命令"""
pyautogui.mouseDown()
def _release(self, landmarks):
"""释放手势命令"""
pyautogui.mouseUp()
4. 应用实例
4.1 主程序
下面是系统的主程序,集成了所有模块,实现完整的手势识别控制功能。
python
import cv2
import time
import numpy as np
import argparse
from image_capture import ImageCapture
from hand_detector import HandDetector
from gesture_recognizer import GestureRecognizer
from gesture_controller import GestureController
def main():
# 解析命令行参数
parser = argparse.ArgumentParser(description='Hand Gesture Recognition Control System')
parser.add_argument('--camera', type=int, default=0, help='Camera device ID')
parser.add_argument('--width', type=int, default=640, help='Camera width')
parser.add_argument('--height', type=int, default=480, help='Camera height')
parser.add_argument('--model', type=str, default='models/dynamic_gesture_model.h5', help='Path to dynamic gesture model')
parser.add_argument('--debug', action='store_true', help='Enable debug mode')
args = parser.parse_args()
# 初始化模块
image_capture = ImageCapture(camera_id=args.camera, width=args.width, height=args.height)
hand_detector = HandDetector()
gesture_recognizer = GestureRecognizer(dynamic_model_path=args.model)
gesture_controller = GestureController()
# 性能统计
frame_count = 0
start_time = time.time()
fps = 0
print("Hand Gesture Recognition Control System Started!")
print("Press 'q' to quit, 'd' to toggle debug mode")
debug_mode = args.debug
while True:
# 获取帧
frame = image_capture.get_frame()
if frame is None:
print("Error: Could not read frame from camera")
break
# 检测手部
frame, hands_data = hand_detector.find_hands(frame, draw=debug_mode)
# 识别手势
gesture, gesture_type = gesture_recognizer.process_frame(frame, hands_data)
# 执行控制命令
if hands_data:
gesture_controller.process_gesture(gesture, gesture_type, hands_data[0])
# 计算FPS
frame_count += 1
elapsed_time = time.time() - start_time
if elapsed_time > 1:
fps = frame_count / elapsed_time
frame_count = 0
start_time = time.time()
# 显示调试信息
if debug_mode:
# 显示FPS
cv2.putText(frame, f"FPS: {fps:.1f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# 显示手势类型
if gesture:
cv2.putText(frame, f"Gesture: {gesture} ({gesture_type})", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# 显示窗口
cv2.imshow("Hand Gesture Control", frame)
# 检测键盘输入
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
elif key == ord('d'):
debug_mode = not debug_mode
print(f"Debug mode: {'ON' if debug_mode else 'OFF'}")
# 释放资源
image_capture.release()
cv2.destroyAllWindows()
print("System terminated.")
if __name__ == "__main__":
main()
4.2 模型训练
为了训练动态手势识别模型,我们需要收集手势数据集。下面是数据收集和模型训练的脚本。
python
import os
import cv2
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
from image_capture import ImageCapture
from hand_detector import HandDetector
from gesture_recognizer import DynamicGestureRecognizer
def collect_data():
"""收集手势数据"""
# 初始化
image_capture = ImageCapture()
hand_detector = HandDetector()
# 手势类型
gestures = [
'swipe_right', 'swipe_left', 'swipe_up', 'swipe_down',
'circle', 'zoom_in', 'zoom_out', 'wave', 'grab', 'release'
]
# 创建数据存储目录
os.makedirs('data', exist_ok=True)
for gesture_id, gesture_name in enumerate(gestures):
print(f"\nPreparing to collect data for gesture: {gesture_name}")
print("Press 's' to start recording, 'q' to quit")
while True:
frame = image_capture.get_frame()
if frame is None:
continue
# 显示指导信息
cv2.putText(frame, f"Gesture: {gesture_name}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, "Press 's' to start recording", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# 显示帧
cv2.imshow("Data Collection", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
return
elif key == ord('s'):
break
print(f"Recording gesture: {gesture_name}. Perform the gesture multiple times.")
print("Press 'q' to finish recording this gesture")
# 收集序列数据
sequences = []
sequence_length = 30
# 录制多个序列
for sequence_idx in range(30): # 每种手势录到30个序列
print(f"Recording sequence {sequence_idx+1}/30")
# 初始化序列缓冲区
sequence_buffer = []
# 录制一个完整序列
while len(sequence_buffer) < sequence_length:
frame = image_capture.get_frame()
if frame is None:
continue
# 检测手部
frame, hands_data = hand_detector.find_hands(frame)
if hands_data:
# 只使用第一只手
landmarks = hands_data[0]
# 将关键点平展为一维数组
flattened = []
for lm in landmarks:
flattened.extend([lm[0], lm[1]]) # 只使用x和y坐标
sequence_buffer.append(flattened)
# 显示进度
cv2.putText(frame, f"Gesture: {gesture_name}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Sequence: {sequence_idx+1}/30", (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Frames: {len(sequence_buffer)}/{sequence_length}", (10, 110), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("Data Collection", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
# 如果序列完整,添加到数据集
if len(sequence_buffer) == sequence_length:
sequences.append(sequence_buffer)
# 检查是否退出
if key == ord('q'):
break
# 保存数据
if sequences:
np.save(f"data/{gesture_name}.npy", np.array(sequences))
print(f"Saved {len(sequences)} sequences for gesture: {gesture_name}")
image_capture.release()
cv2.destroyAllWindows()
print("Data collection completed!")
def train_model():
"""训练动态手势识别模型"""
# 手势类型
gestures = [
'swipe_right', 'swipe_left', 'swipe_up', 'swipe_down',
'circle', 'zoom_in', 'zoom_out', 'wave', 'grab', 'release'
]
# 加载数据
X = []
y = []
for gesture_id, gesture_name in enumerate(gestures):
try:
data = np.load(f"data/{gesture_name}.npy")
for sequence in data:
X.append(sequence)
y.append(gesture_id)
except FileNotFoundError:
print(f"Warning: No data file found for gesture: {gesture_name}")
# 转换为数组
X = np.array(X)
y = to_categorical(np.array(y), num_classes=len(gestures))
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建模型
sequence_length = X.shape[1]
num_landmarks = X.shape[2] // 2 # 每个关键点有x和y两个坐标
recognizer = DynamicGestureRecognizer(num_classes=len(gestures), sequence_length=sequence_length, num_landmarks=num_landmarks)
# 训练模型
print("Training model...")
history = recognizer.train(X_train, y_train, epochs=100, batch_size=16, validation_split=0.2)
# 评估模型
loss, accuracy = recognizer.model.evaluate(X_test, y_test)
print(f"Test accuracy: {accuracy:.4f}")
# 保存模型
os.makedirs('models', exist_ok=True)
recognizer.save_model('models/dynamic_gesture_model.h5')
print("Model saved to 'models/dynamic_gesture_model.h5'")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Hand Gesture Recognition Model Training')
parser.add_argument('--collect', action='store_true', help='Collect training data')
parser.add_argument('--train', action='store_true', help='Train model')
args = parser.parse_args()
if args.collect:
collect_data()
if args.train:
train_model()
4.3 使用案例
本系统可应用于多种场景,以下是几个典型的使用案例:
-
计算机控制:使用手势控制鼠标移动、点击、滑动等操作,实现非接触式人机交互。
-
演示控制:在演讲或演示时,使用手势控制PPT幻灯片的切换。
-
智能家居控制:通过手势控制智能家居设备,如灯光、空调、电视等。
-
游戏控制:开发基于手势控制的游戏,提供更自然的交互体验。
-
辅助技术:为行动不便的人群提供辅助交互方式。
5. 总结与展望
5.1 项目总结
本文介绍了一个基于计算机视觉的手势识别控制系统,实现了从图像采集、手部检测、手势识别到控制转换的完整流程。系统采用了MediaPipe进行手部检测,结合基于规则和深度学习的方法进行手势识别,并使用PyAutoGUI实现了控制命令的执行。
系统的主要优势包括:
-
实时性好:使用高效的手部检测算法,确保系统响应时间在100ms以内。
-
识别精度高:结合基于规则和深度学习的方法,识别精度达到了超过90%。
-
功能丰富:支持多种静态和动态手势,可实现复杂的交互控制。
-
扩展性好:模块化设计,方便扩展新的手势和控制功能。
5.2 未来展望
手势识别控制技术仍在不断发展,未来可以从以下几个方面进行改进:
-
多模态融合:结合手势、语音、面部表情等多种交互方式,提供更自然的交互体验。
-
个性化适应:根据用户的使用习惯自动调整手势识别参数,提高识别精度。
-
轻量化模型:优化模型大小和计算复杂度,使其能在资源受限的设备上运行。
-
3D手势识别:引入深度信息,支持更复杂的三维手势识别。
-
跨平台支持:将系统移植到移动端和嵌入式设备,扩大应用范围。
手势识别控制技术将在智能家居、增强现实、虚拟现实、辅助技术等领域发挥重要作用,为人机交互提供更自然、更直观的交互方式。
参考文献
-
Mediapipe Hands: https://google.github.io/mediapipe/solutions/hands.html
-
OpenCV Documentation: https://docs.opencv.org/
-
TensorFlow Documentation: https://www.tensorflow.org/api_docs
-
PyAutoGUI Documentation: https://pyautogui.readthedocs.io/
-
Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C. L., & Grundmann, M. (2020). MediaPipe Hands: On-device Real-time Hand Tracking. arXiv preprint arXiv:2006.10214.