Spark集群搭建之Yarn模式

1.把spark安装包复制到你存放安装包的目录下,例如我的是/opt/software

cd /opt/software,进入到你存放安装包的目录

然后tar -zxvf 你的spark安装包的完整名字 -C /opt/module,进行解压。例如我的spark完整名字是spark-3.1.1-bin-hadoop3.2.tgz,所以我要输入的命令是

tar -zxvf spark-3.1.1-bin-hadoop3.2.tgz -C /opt/module

2.配置spark的环境变量

进入到/etc/profile.d目录下

自己新建一个存放修改spark环境变量的文件,例如我的是my_env.sh,在里面添加配置的内容

添加以下内容
# spark 环境变量
export SPARK_HOME=/opt/module/spark-yarn
export PATH=PATH:SPARK_HOME/bin:$SPARK_HOME/sbin

保存修改,回到输入命令界面,输入source /etc/profile,重新刷新环境变量,让修改的环境变量生效。

在输入 echo $PATH回车,出现spark-local/bin:/opt/module/spark-local/sbin说明我们已经配置好spark的环境变

同步给其他的设备: xsync /etc/profile.d/

3.修改hadoop的配置。/opt/module/hadoop-3.1.3/etc/hadoop/yarn-site.xml。因为测试环境虚拟机内存较少,防止执行过程进行被意外杀死,添加如下配置。

<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->

<property>

<name>yarn.nodemanager.pmem-check-enabled</name>

<value>false</value>

</property>

<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->

<property>

<name>yarn.nodemanager.vmem-check-enabled</name>

<value>false</value>

</property>

把这个设置分发到其他节点。使用xsync /opt/module/hadoop-3.1.3/etc/hadoop/同步一下。

4.修改spark配置。 把三个文件的名字重新设置一下。

workers.tempalte 改成 workers,spark-env.sh.template 改成 spark-env.sh,

spark-defaults.conf.template 改成 spark-defaults.conf。

然后,在workers文件中添加

hadoop100

hadoop101
hadoop102

在spark-env.sh文件中,添加如下

SPARK_MASTER_HOST=hadoop100

SPARK_MASTER_PORT=7077

HADOOP_CONF_DIR=/opt/module/hadoop-3.1.3/etc/hadoop

YARN_CONF_DIR=/opt/module/hadoop-3.1.3/etc/hadoop
export SPARK_HISTORY_OPTS="-Dspark.history.fs.logDirectory=hdfs://hadoop100:8020/directory"

在spark-defaults.conf文件中,添加如下

spark.eventLog.enabled true
spark.eventLog.dir hdfs://hadoop100:8020/directory
spark.yarn.historyServer.address=hadoop100:18080
spark.history.ui.port=18080

5.同步配置文件到其他设备。xsync /opt/module/spark-yarn/sbin

启动集群

注意这里要同时启动hadoop和spark。

1.启动hdfs和yarn。使用我们之前配置的脚本:myhadoop start

  1. 启动spark和spark的历史服务器。进入/opt/module/spart-yarn/sbin,运行: ./start-all.sh 和 ./start-history-server.sh

并通过jps去检查是否有对应的进程。

提交任务到集群

使用spark-submit提交任务

spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster /opt/module/spark-standalone/examples/jars/spark-examples_2.12-3.1.1.jar 10

查看运行结果
  1. 在yarn任务面板页面中可以看到任务的信息。http://hadoop101:8088/cluster

如果可以看任务信息,说明任务运行成功!

相关推荐
Elastic 中国社区官方博客1 天前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
未来之窗软件服务1 天前
浏览器开发CEFSharp+X86 (十六)网页读取电子秤数据——仙盟创梦IDE
大数据·智能硬件·浏览器开发·仙盟创梦ide·东方仙盟·东方仙盟网页调用sdk
roman_日积跬步-终至千里1 天前
【系统架构设计(24)】大型网站系统架构演化:从单体到分布式的技术进阶之路
分布式·系统架构
阿豪31 天前
2025 年职场转行突围:除实习外,这些硬核证书让你的简历脱颖而出(纯经验分享)
大数据·人工智能·经验分享·科技·信息可视化·产品经理
张驰课堂1 天前
老树发新芽:六西格玛培训为石油机械制造注入持久活力
大数据·人工智能·制造
卡卡_R-Python1 天前
大数据探索性分析——抽样技术应用
大数据·r
Luminbox紫创测控1 天前
稳态太阳光模拟器 | 多源分布式设计的要点有哪些?
分布式
伍哥的传说1 天前
Lodash-es 完整开发指南:ES模块化JavaScript工具库实战教程
大数据·javascript·elasticsearch·lodash-es·javascript工具库·es模块·按需导入
请提交用户昵称1 天前
大数据各组件flume,datax,presto,DolphinScheduler,findBI在大数据数仓架构中的作用和功能。
大数据·flume·datax·dolphin·presto·findbi·大数据组件
IT果果日记1 天前
详解DataX开发达梦数据库插件
大数据·数据库·后端