cpp
#include <cuda_runtime_api.h>
#include <iostream>
// Beginning of GPU Architecture definitions
inline int _ConvertSMVer2Cores(int major, int minor) {
// Defines for GPU Architecture types (using the SM version to determine
// the # of cores per SM
typedef struct {
int SM; // 0xMm (hexidecimal notation), M = SM Major version,
// and m = SM minor version
int Cores;
} sSMtoCores;
sSMtoCores nGpuArchCoresPerSM[] = {
{0x30, 192}, {0x32, 192}, {0x35, 192}, {0x37, 192}, {0x50, 128},
{0x52, 128}, {0x53, 128}, {0x60, 64}, {0x61, 128}, {0x62, 128},
{0x70, 64}, {0x72, 64}, {0x75, 64}, {0x80, 64}, {0x86, 128},
{0x87, 128}, {0x89, 128}, {0x90, 128}, {0xa0, 128}, {0xa1, 128},
{0xc0, 128}, {-1, -1}};
int index = 0;
while (nGpuArchCoresPerSM[index].SM != -1) {
if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) {
return nGpuArchCoresPerSM[index].Cores;
}
index++;
}
// If we don't find the values, we default use the previous one
// to run properly
printf("MapSMtoCores for SM %d.%d is undefined."
" Default to use %d Cores/SM\n",
major, minor, nGpuArchCoresPerSM[index - 1].Cores);
return nGpuArchCoresPerSM[index - 1].Cores;
}
inline const char *_ConvertSMVer2ArchName(int major, int minor) {
// Defines for GPU Architecture types (using the SM version to determine
// the GPU Arch name)
typedef struct {
int SM; // 0xMm (hexidecimal notation), M = SM Major version,
// and m = SM minor version
const char *name;
} sSMtoArchName;
sSMtoArchName nGpuArchNameSM[] = {
{0x30, "Kepler"}, {0x32, "Kepler"}, {0x35, "Kepler"},
{0x37, "Kepler"}, {0x50, "Maxwell"}, {0x52, "Maxwell"},
{0x53, "Maxwell"}, {0x60, "Pascal"}, {0x61, "Pascal"},
{0x62, "Pascal"}, {0x70, "Volta"}, {0x72, "Xavier"},
{0x75, "Turing"}, {0x80, "Ampere"}, {0x86, "Ampere"},
{0x87, "Ampere"}, {0x89, "Ada"}, {0x90, "Hopper"},
{0xa0, "Blackwell"}, {0xa1, "Blackwell"}, {0xc0, "Blackwell"},
{-1, "Graphics Device"}};
int index = 0;
while (nGpuArchNameSM[index].SM != -1) {
if (nGpuArchNameSM[index].SM == ((major << 4) + minor)) {
return nGpuArchNameSM[index].name;
}
index++;
}
// If we don't find the values, we default use the previous one
// to run properly
printf("MapSMtoArchName for SM %d.%d is undefined."
" Default to use %s\n",
major, minor, nGpuArchNameSM[index - 1].name);
return nGpuArchNameSM[index - 1].name;
}
// end of GPU Architecture definitions
int main() {
int count;
cudaGetDeviceCount(&count); // 返回计算能力大于1.0的GPU数量
// int gpuid = 0; // 选择GPU: 0
// cudaSetDevice(gpuid); // 根据GPU的index设置需要的GPU,默认为0
// cudaGetDevice(&gpuid); // 获得当前线程所使用的GPU index,赋值给device
for (int i = 0; i < count; ++i) {
struct cudaDeviceProp device_prop;
auto error = cudaGetDeviceProperties(&device_prop, i);
if (cudaSuccess != error) {
std::cerr << "cudaGetDeviceProperties " << i << " error "
<< cudaGetErrorString(error) << std::endl;
break;
}
std::cout << "GPU \t" << i << std::endl;
std::cout << "Name: \t" << device_prop.name << std::endl;
std::cout << "Architecture: "
<< _ConvertSMVer2ArchName(device_prop.major,
device_prop.minor)
<< std::endl;
std::cout << "Capability: \t" << device_prop.major << "."
<< device_prop.minor << std::endl;
std::cout << "Spcores \t"
<< _ConvertSMVer2Cores(device_prop.major, device_prop.minor) *
device_prop.multiProcessorCount
<< std::endl;
std::cout << "Total Memory: \t"
<< (device_prop.totalGlobalMem / 1024 / 1024) << " MB "
<< std::endl;
std::cout << "Shared Memory Per Block: \t"
<< (device_prop.sharedMemPerBlock / 1024) << " KB "
<< std::endl;
std::cout << "warpSize: \t" << device_prop.warpSize << std::endl;
std::cout << "Max Threads Per Block: \t"
<< device_prop.maxThreadsPerBlock << std::endl;
std::cout << "Max Threads Dim: \t[" << device_prop.maxThreadsDim[0]
<< ", " << device_prop.maxThreadsDim[1] << ", "
<< device_prop.maxThreadsDim[2] << "]" << std::endl;
std::cout << "Max Grid Size: \t[" << device_prop.maxGridSize[0] << ", "
<< device_prop.maxGridSize[1] << ", "
<< device_prop.maxGridSize[2] << "]" << std::endl;
}
}
_ConvertSMVer2Cores 用于获取每个流处理器的核心数,_ConvertSMVer2ArchName 用于获取架构名称,这两个函数都来自https://github.com/NVIDIA/cuda-samples/blob/master/Common/helper_cuda.h
CMakeLists.txt
bash
cmake_minimum_required(VERSION 3.26)
project(learningcuda CUDA CXX)
# 该命令会导入一个名为 CUDA::toolkit 的模块. 并且会给包含在 CUDAToolkit 的一些库定义可选的导入目标. 例如可以使用
# CUDA::cudart 来导入 CUDA Runtime 库, 使用 CUDA::cublas 来导入 cuBLAS 库等.
find_package(CUDAToolkit REQUIRED)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CUDA_STANDARD 11)
# 变量 CMAKE_CUDA_ARCHITECTURES 是 CMake 3.18 版本中加入的一个变量, 用于指定编译 CUDA 代码时支持的 GPU
# 架构, 如果要使用新架构的一些特性, 则必须要指定特定的架构. nvidia-smi -q | grep Architecture 查看架构信息
set(CMAKE_CUDA_ARCHITECTURES 60)
add_executable(deviceInfo deviceInfo.cu)
运行结果
$ ./deviceInfo
GPU 0
Name: NVIDIA GeForce GTX 1050 Ti
Architecture: Pascal
Capability: 6.1
Spcores 768
Total Memory: 4038 MB
Shared Memory Per Block: 48 KB
warpSize: 32
Max Threads Per Block: 1024
Max Threads Dim: [1024, 1024, 64]
Max Grid Size: [2147483647, 65535, 65535]