opencv 读取3G大图失败,又不想重新编译opencv ,可以如下操作

先到这里:nothings/stb: stb single-file public domain libraries for C/C++下载一个stb_image.h头文件,把其放到工程里,然后添加如下代码:

cpp 复制代码
#include <opencv2/opencv.hpp>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"  // 确保路径正确

int main() {
    const char* filename = "huge_image.bmp";  // 支持 BMP/PNG/JPEG/TIFF等

    // 1. 使用 STB Image 加载图像
    int width, height, channels;
    unsigned char* data = stbi_load(filename, &width, &height, &channels, 0);
    
    if (!data) {
        std::cerr << "Error: Failed to load image (" << stbi_failure_reason() << ")" << std::endl;
        return -1;
    }

    // 2. 将数据转换为 OpenCV Mat
    cv::Mat img;
    switch (channels) {
        case 1:  // 灰度图
            img = cv::Mat(height, width, CV_8UC1, data);
            break;
        case 3:  // RGB
            img = cv::Mat(height, width, CV_8UC3, data);
            cv::cvtColor(img, img, cv::COLOR_RGB2BGR);  // STB 返回 RGB,OpenCV 默认 BGR
            break;
        case 4:  // RGBA
            img = cv::Mat(height, width, CV_8UC4, data);
            cv::cvtColor(img, img, cv::COLOR_RGBA2BGRA);
            break;
        default:
            std::cerr << "Error: Unsupported number of channels: " << channels << std::endl;
            stbi_image_free(data);
            return -1;
    }

    // 3. 检查转换结果
    if (img.empty()) {
        std::cerr << "Error: Failed to create cv::Mat" << std::endl;
        stbi_image_free(data);
        return -1;
    }

    std::cout << "Success! Image size: " << img.cols << "x" << img.rows 
              << ", Channels: " << img.channels() << std::endl;

    // 4. 释放 STB Image 内存(注意:此时 Mat 仍引用数据!)
    // 如果后续需要独立使用 Mat,需克隆数据:
    // cv::Mat img_clone = img.clone();
    // stbi_image_free(data);

    // 直接使用 img(需确保在释放 data 前完成操作)
    cv::imshow("Image", img);
    cv::waitKey(0);

    stbi_image_free(data);  // 释放内存
    return 0;
}

最好是使用stb_img读取内存后转mat,然后立刻clone,然后是否stb的内存,这样就可以使用opencv处理了,点赞收藏呀

相关推荐
FL162386312914 分钟前
荔枝成熟度分割数据集labelme格式2263张3类别
人工智能·深度学习
一点.点17 分钟前
DRIVEGPT4: 通过大语言模型实现可解释的端到端自动驾驶
人工智能·语言模型·自然语言处理·自动驾驶
天涯海风1 小时前
介绍一下什么是 AI、 AGI、 ASI
人工智能·agi
zzc9211 小时前
Tensorflow 2.X Debug中的Tensor.numpy问题 @tf.function
人工智能·tensorflow·numpy
我是你们的星光1 小时前
基于深度学习的高效图像失真校正框架总结
人工智能·深度学习·计算机视觉·3d
追逐☞2 小时前
机器学习(11)——xgboost
人工智能·机器学习
智驱力人工智能3 小时前
AI移动监测:仓储环境安全的“全天候守护者”
人工智能·算法·安全·边缘计算·行为识别·移动监测·动物检测
斯普信专业组3 小时前
Apidog MCP服务器,连接API规范和AI编码助手的桥梁
运维·服务器·人工智能
小技工丨3 小时前
LLaMA-Factory:了解webUI参数
人工智能·llm·llama·llama-factory
whaosoft-1433 小时前
w~自动驾驶~合集3
人工智能