决策树随机深林

决策树和随机森林是机器学习中常用的两种模型,以下是对它们的简单介绍:

决策树

  • 原理:通过一系列的条件判断对样本进行分类或预测。它由节点(内部节点是属性上的测试,叶节点是类别或值)和边组成,根据特征的取值将样本逐步划分到不同的分支,最终到达叶节点得到结果。

  • 构建过程:通常使用贪心算法,从根节点开始,选择最优的特征进行分裂,使得分裂后的子节点尽可能纯净(对于分类问题,节点内样本属于同一类的比例越高越好),递归地构建子树,直到满足停止条件,如节点内样本数小于某个阈值、树的深度达到上限等。

  • 优点:模型具有可解释性,容易理解决策过程;能处理离散和连续特征;对缺失值不敏感。

  • 缺点:容易过拟合,尤其是在数据复杂、树深度较大时;对噪声数据敏感;当特征数量过多时,可能会出现过拟合且模型变得复杂难以理解。

随机森林

  • 原理:基于决策树的集成学习模型。从训练数据中有放回地随机抽样,生成多个子集,分别构建决策树,然后综合这些决策树的预测结果进行最终决策(对于分类问题通常采用投票法,对于回归问题通常采用平均法)。

  • 构建过程:首先确定森林中决策树的数量和其他相关参数。然后对训练数据进行多次有放回抽样,得到多个自助样本集。针对每个自助样本集,按照决策树的构建方法生成一棵决策树。在构建决策树时,还可以随机选择一部分特征来进行节点分裂,进一步增加模型的多样性。

  • 优点:不容易过拟合,具有较好的泛化能力;对数据中的噪声和异常值有较好的鲁棒性;能处理高维数据,自动进行特征选择;并行性好,可以并行训练多棵树,提高训练效率。

  • 缺点:模型相对复杂,可解释性不如单棵决策树;训练时间和空间成本较高,尤其是当树的数量较多时;对于一些特定的数据集,可能存在模型精度提升不明显的情况。

相关推荐
小墙程序员几秒前
机器学习入门(八)模型评价与优化
机器学习
jerry6096 分钟前
c++流对象
开发语言·c++·算法
fmdpenny6 分钟前
用python写一个相机选型的简易程序
开发语言·python·数码相机
信息快讯11 分钟前
【机器学习驱动的智能化电池管理技术与应用】
人工智能·机器学习
进来有惊喜22 分钟前
循环神经网络RNN---LSTM
人工智能·rnn·深度学习
Chrome深度玩家23 分钟前
如何下载Google Chrome适用于AI语音交互的特制版
前端·人工智能·chrome
Xiaoxiaoxiao020924 分钟前
GAEA情感坐标背后的技术原理
人工智能·web3·区块链
敲敲敲-敲代码28 分钟前
【PyCharm- Python- ArcGIS】:安装一个和 ArcGIS 不冲突的独立 Python让PyCharm 使用 (解决全过程记录)
python·arcgis·pycharm
崔高杰31 分钟前
On the Biology of a Large Language Model——Claude团队的模型理解文章【论文阅读笔记】其一CLT与LLM知识推理
论文阅读·人工智能·笔记·语言模型·自然语言处理
猿榜编程1 小时前
python基础-requests结合AI实现自动化数据抓取
开发语言·python·自动化