月之暗面开源-音频理解、生成和对话生成模型:Kimi-Audio-7B-Instruct

一、Kimi - Audio 简介

Kimi - Audio 是一个开源的音频基础模型,在音频理解、生成和对话等方面表现出色。其设计旨在作为一个通用的音频基础模型,能够在单一统一的框架内处理各种音频处理任务,如语音识别(ASR)、音频问答(AQA)、音频描述(AAC)、语音情感识别(SER)、声音事件 / 场景分类(SEC/ASC)以及端到端的语音对话等。并且在众多音频基准测试中取得了前沿的成果。

二、技术特点

  • 大规模预训练 :在超过 1300 万小时的多样化音频数据(包括语音、音乐、声音)和文本数据上进行了预训练,这使得模型具有广泛的知识基础和强大的泛化能力。

  • 新颖的架构 :采用混合音频输入(连续声学 + 离散语义令牌)以及具有并行头部用于文本和音频令牌生成的大型语言模型(LLM)核心,这种架构设计有助于模型更好地理解和生成音频内容。

  • 高效的推理 :具备基于流匹配的分块式流式解码器,可实现低延迟的音频生成,从而在实际应用中能够快速响应用户需求。

三、使用方法

  • 环境搭建 :推荐通过构建 Docker 镜像来运行推理。可以使用命令 git clone https://github.com/MoonshotAI/Kimi-Audio 克隆代码并构建镜像,也可以使用预构建的镜像 docker pull moonshotai/kimi-audio:v0.1,或者安装相关依赖 pip install -r requirements.txt

  • 模型加载与推理 :首先需要从 Hugging Face Hub 加载模型,确保已登录(如果是私有仓库的话)。然后定义采样参数,包括音频和文本的温度、top_k 值、重复惩罚等。接着通过调用模型的生成方法,可以实现音频到文本(如语音识别)以及音频到音频 / 文本对话等功能。

四、总结

Kimi - Audio 作为一个功能强大的通用音频基础模型,凭借其出色的技术特点和方便的使用方式,在音频处理领域具有广阔的应用前景。

核心技术表格如下:

相关推荐
weixin_446260854 小时前
LocalAI:一个免费开源的AI替代方案,让创意更自由!
人工智能·开源
CAE3204 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
骄傲的心别枯萎4 小时前
RV1126 NO.37:OPENCV的图像叠加功能
人工智能·opencv·计算机视觉·音视频·视频编解码·rv1126
HyperAI超神经4 小时前
解决蛋白质构象异质性的原子级建模挑战!David Baker团队PLACER框架解析
人工智能·深度学习·ai·ai4s·蛋白质结构
TG:@yunlaoda360 云老大7 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗7 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
兴趣使然黄小黄10 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭10 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t10 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite
说私域10 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序