月之暗面开源-音频理解、生成和对话生成模型:Kimi-Audio-7B-Instruct

一、Kimi - Audio 简介

Kimi - Audio 是一个开源的音频基础模型,在音频理解、生成和对话等方面表现出色。其设计旨在作为一个通用的音频基础模型,能够在单一统一的框架内处理各种音频处理任务,如语音识别(ASR)、音频问答(AQA)、音频描述(AAC)、语音情感识别(SER)、声音事件 / 场景分类(SEC/ASC)以及端到端的语音对话等。并且在众多音频基准测试中取得了前沿的成果。

二、技术特点

  • 大规模预训练 :在超过 1300 万小时的多样化音频数据(包括语音、音乐、声音)和文本数据上进行了预训练,这使得模型具有广泛的知识基础和强大的泛化能力。

  • 新颖的架构 :采用混合音频输入(连续声学 + 离散语义令牌)以及具有并行头部用于文本和音频令牌生成的大型语言模型(LLM)核心,这种架构设计有助于模型更好地理解和生成音频内容。

  • 高效的推理 :具备基于流匹配的分块式流式解码器,可实现低延迟的音频生成,从而在实际应用中能够快速响应用户需求。

三、使用方法

  • 环境搭建 :推荐通过构建 Docker 镜像来运行推理。可以使用命令 git clone https://github.com/MoonshotAI/Kimi-Audio 克隆代码并构建镜像,也可以使用预构建的镜像 docker pull moonshotai/kimi-audio:v0.1,或者安装相关依赖 pip install -r requirements.txt

  • 模型加载与推理 :首先需要从 Hugging Face Hub 加载模型,确保已登录(如果是私有仓库的话)。然后定义采样参数,包括音频和文本的温度、top_k 值、重复惩罚等。接着通过调用模型的生成方法,可以实现音频到文本(如语音识别)以及音频到音频 / 文本对话等功能。

四、总结

Kimi - Audio 作为一个功能强大的通用音频基础模型,凭借其出色的技术特点和方便的使用方式,在音频处理领域具有广阔的应用前景。

核心技术表格如下:

相关推荐
云知谷1 小时前
【C++基本功】C++适合做什么,哪些领域适合哪些领域不适合?
c语言·开发语言·c++·人工智能·团队开发
rit84324991 小时前
基于MATLAB实现基于距离的离群点检测算法
人工智能·算法·matlab
初学小刘2 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛3 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
之墨_4 小时前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
从孑开始4 小时前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI4 小时前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
可触的未来,发芽的智生5 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
WWZZ20255 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
AKAMAI5 小时前
数据孤岛破局之战 :跨业务分析的难题攻坚
运维·人工智能·云计算