GBDT算法原理及Python实现

一、概述

GBDT(Gradient Boosting Decision Tree,梯度提升决策树)是集成学习中提升(Boosting)方法的典型代表。它以决策树(通常是 CART 树,即分类回归树)作为弱学习器,通过迭代的方式,不断拟合残差(回归任务)或负梯度(分类任务),逐步构建一系列决策树,最终将这些树的预测结果进行累加,得到最终的预测值。

二、算法原理

1. 梯度下降思想​

梯度下降是一种常用的优化算法,用于寻找函数的最小值。在 GBDT 中,它扮演着至关重要的角色。假设我们有一个损失函数\(L\left( y,\hat{y} \right)\),其中\(y\)是真实值,\(\hat y\)是预测值。梯度下降的目标就是通过不断调整模型参数,使得损失函数的值最小化。具体来说,每次迭代时,沿着损失函数关于参数的负梯度方向更新参数,以逐步接近最优解。在 GBDT 中,虽然没有显式地更新参数(通过构建多颗决策树来拟合目标),但拟合的目标是损失函数的负梯度,本质上也是利用了梯度下降的思想。

2. 决策树的构建​

GBDT 使用决策树作为弱学习器。决策树是一种基于树结构的预测模型,它通过对数据特征的不断分裂,将数据划分成不同的子集,每个子集对应树的一个节点。在每个节点上,通过某种准则(如回归任务中的平方误差最小化,分类任务中的基尼指数最小化)选择最优的特征和分裂点,使得划分后的子集在目标变量上更加 "纯净" 或具有更好的区分度。通过递归地进行特征分裂,直到满足停止条件(如达到最大树深度、节点样本数小于阈值等),从而构建出一棵完整的决策树。

3. 迭代拟合的过程​

(1) 初始化模型

首先,初始化一个简单的模型,通常是一个常数模型,记为\(f_0(X)\) ,其预测值为所有样本真实值的均值(回归任务)或多数类(分类任务),记为\(\hat y_0\)。此时,模型的预测结果与真实值之间存在误差。

(2) 计算残差或负梯度

在回归任务中,计算每个样本的残差,即真实值\(y_i\)与当前模型预测值\(\hat y_{i,t-1}\)的差值\(r_{i,t}=y_i-\hat y_{i,t-1}\),其中表示迭代的轮数。在分类任务中,计算损失函数关于当前模型预测值的负梯度$$g_{i,t}=-\frac{\vartheta L(y_i,\hat y_{i,t-1})}{\vartheta \hat y_{i,t-1}}$$

(3) 拟合决策树

使用计算得到的残差(回归任务)或负梯度(分类任务)作为新的目标值,训练一棵新的决策树\(f_t(X)\)。这棵树旨在拟合当前模型的误差,从而弥补当前模型的不足。

(4) 更新模型

根据新训练的决策树,更新当前模型。更新公式为\(\hat y_{i,t}=\hat y_{i,t-1}+\alpha f_t(x_i)\),其中是学习率(也称为步长),用于控制每棵树对模型更新的贡献程度。学习率较小可以使模型训练更加稳定,但需要更多的迭代次数;学习率较大则可能导致模型收敛过快,甚至无法收敛。

(5) 重复迭代

重复步骤 (2)--(4)步,不断训练新的决策树并更新模型,直到达到预设的迭代次数、损失函数收敛到一定程度或满足其他停止条件为止。最终,GBDT 模型由多棵决策树组成,其预测结果是所有决策树预测结果的累加。

算法过程图示

GBDT 算法将梯度下降思想与决策树相结合,通过迭代拟合残差或负梯度,逐步构建一个强大的集成模型。它在处理复杂数据和非线性关系时表现较为出色,在数据挖掘、机器学习等领域得到了广泛的应用。然而,GBDT 也存在一些缺点,如训练时间较长、对异常值较为敏感等,在实际应用中需要根据具体情况进行优化和调整 。

三、Python实现

(环境:Python 3.11,scikit-learn 1.5.1)

分类情形

python 复制代码
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn import metrics

# 生成样本数据
X, y = make_classification(n_samples=1000, n_features=50, n_informative=10, n_redundant=5, random_state=1)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

# 创建GDBT分类模型
gbc = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=1)

# 训练模型
gbc.fit(X_train, y_train)

# 进行预测
y_pred = gbc.predict(X_test)

# 计算准确率
accuracy = metrics.accuracy_score(y_test,y_pred)
print('准确率为:',accuracy)

回归情形

python 复制代码
from sklearn.datasets import make_regression
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

# 生成样本数据
X, y = make_regression(n_samples=1000, n_features=10, n_informative=5, noise=0.1, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建GDBT回归模型
model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, random_state=42)

# 训练模型
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f"MSE: {mse}")

End.

下载

相关推荐
Learn Beyond Limits28 分钟前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai
数据爬坡ing32 分钟前
从挑西瓜到树回归:用生活智慧理解机器学习算法
数据结构·深度学习·算法·决策树·机器学习
m0_677034351 小时前
机器学习-异常检测
人工智能·深度学习·机器学习
Christo34 小时前
TFS-2003《A Contribution to Convergence Theory of Fuzzy c-Means and Derivatives》
人工智能·算法·机器学习
Yingjun Mo4 小时前
1. 统计推断-ALMOND收敛性分析
人工智能·算法·机器学习
Loving_enjoy4 小时前
YOLOv11改进大全:从卷积层到检测头,全方位提升目标检测性能
经验分享·机器学习·迁移学习·facebook
天上的光5 小时前
大模型——剪枝、量化、蒸馏、二值化
算法·机器学习·剪枝
西猫雷婶5 小时前
pytorch基本运算-分离计算
人工智能·pytorch·python·深度学习·神经网络·机器学习
没有梦想的咸鱼185-1037-16637 小时前
基于R语言机器学习方法在生态经济学领域中的实践技术应用
开发语言·机器学习·数据分析·r语言
Webb Yu7 小时前
Azure Databricks 实践:数据分析、机器学习、ETL 与 Delta Lake
机器学习·数据分析·azure