Unity AI-使用Ollama本地大语言模型运行框架运行本地Deepseek等模型实现聊天对话(一)

一、Ollama介绍

官方网页:Ollama官方网址

中文文档参考:Ollama中文文档

相关教程:Ollama教程

Ollama 是一个开源的工具,旨在简化大型语言模型(LLM)在本地计算机上的运行和管理。它允许用户无需复杂的配置即可在本地部署和运行如Llama 3.3、DeepSeek-R1、Phi-4、Mistral、Gemma 2 和其他模型,适合开发者、研究人员以及对隐私和离线使用有需求的用户。

二、核心功能

  1. 本地运行模型
    直接在个人电脑或服务器上运行模型,无需依赖云服务,保障数据隐私和离线可用性。
  2. 多平台支持
    支持 macOS、Linux、Windows,并提供 Docker 镜像,方便跨平台部署。
  3. 模型管理
    通过命令行轻松下载、更新或删除模型(如 ollama run llama2)。
  4. API 集成
    提供 RESTful API,便于与其他应用(如 Python 脚本、自定义工具)集成。
  5. 多模型支持
    兼容Llama 3.3、DeepSeek-R1、Phi-4、Mistral、Gemma 2 等,部分支持自定义模型加载。

三、Ollama安装

1、硬件要求

内存至少 8GB RAM,运行较大模型时推荐 16GB 或更高。部分大模型需显卡加速(如 NVIDIA GPU + CUDA)。

2、下载安装

官方网站下载对应版本。

下载完成后,打开安装程序并按照提示完成安装。

安装完成可以打开命令行管理器(CMD)或Powershell输入下面指令验证安装是否成功

bash 复制代码
ollama --version

3、运行模型

bash 复制代码
ollama run llama3.2

执行以上命令如果没有该模型会去下载 llama3.2 模型

bash 复制代码
ollama run deepseek-r1:7b

如果使用deepseekR1模型将命令替换为deepseek即可,7b是运行的模型大小

支持的模型访问ollama模型

输入内容实现与模型对话(示例为llama3.2模型)

相关推荐
新知图书18 分钟前
OpenCV图像金字塔
人工智能·opencv·计算机视觉
Eric.Lee202120 分钟前
数据集-目标检测系列- 狮子 数据集 lion >> DataBall
人工智能·目标检测·目标跟踪
yanmengying20 分钟前
目标检测yolo算法
人工智能·yolo·目标检测
艾醒(AiXing-w)20 分钟前
玩转计算机视觉——按照配置部署paddleOCR(英伟达环境与昇腾300IDUO环境)
人工智能·计算机视觉
张较瘦_25 分钟前
[论文阅读] 人工智能 | Gen-n-Val:利用代理技术革新计算机视觉数据生成
论文阅读·人工智能·计算机视觉
路溪非溪25 分钟前
AI应用:计算机视觉相关技术总结
人工智能·计算机视觉
老周聊大模型36 分钟前
解剖Transformers库:从AutoClass设计到FlashAttention-2的工程实现
人工智能
r0ysue_1 小时前
03.利用显卡内核模块等特性为算法提速百倍
人工智能·python·机器学习
西猫雷婶1 小时前
pytorch基本运算-梯度运算:requires_grad_(True)和backward()
人工智能·pytorch·python·深度学习·机器学习
ONEYAC唯样1 小时前
英飞凌亮相SEMICON China 2025:以SiC、GaN技术引领低碳化与数字化未来
人工智能·神经网络·生成对抗网络