python:sklearn 决策树(Decision Tree)

5. 决策树(Decision Tree) - 第5章

算法思想:基于信息增益(ID3)或基尼不纯度(CART)递归划分特征。

编写 test_dtree_1.py 如下

python 复制代码
# -*- coding: utf-8 -*-
""" 5. 决策树(Decision Tree) """
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

# 加载 乳腺癌数据
data = load_breast_cancer()
X, y = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

model = DecisionTreeClassifier(criterion='entropy', max_depth=3)
model.fit(X_train, y_train)
print("Accuracy:", model.score(X_test, y_test))

Anaconda 3

运行 python test_dtree_1.py

Accuracy: 0.9736842105263158


编写 test_dtree_2.py 如下

python 复制代码
# -*- coding: utf-8 -*-
""" 5. 决策树(Decision Tree) """
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import preprocessing
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,accuracy_score
from sklearn.tree import plot_tree

# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
f_names = iris.feature_names
t_names = iris.target_names

# 数据预处理:按列归一化
X = preprocessing.scale(X)
# 切分数据集:测试集 20%
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 初始化 决策树 分类模型
dtc = DecisionTreeClassifier()
# 模型训练
dtc.fit(X_train,y_train)
# 模型预测
y_pred = dtc.predict(X_test)
# 模型评估
# 混淆矩阵
#print(confusion_matrix(y_test,y_pred))
print("准确率: %.4f" % accuracy_score(y_test,y_pred))

# 可视化决策树
plt.figure(figsize=(12,10))
plot_tree(dtc, feature_names=f_names, class_names=t_names, filled=True)
plt.show()

运行 python test_dtree_2.py

相关推荐
你知道网上冲浪吗10 分钟前
【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架
python·算法·数学建模·数值分析
钢铁男儿14 分钟前
Python 正则表达式核心元字符全解析
python
杨荧40 分钟前
基于Python的宠物服务管理系统 Python+Django+Vue.js
大数据·前端·vue.js·爬虫·python·信息可视化
CodeCraft Studio1 小时前
在 Python 中操作 Excel 文件的高效方案 —— Aspose.Cells for Python
python·ui·excel·报表·aspose·aspose.cells
l1t1 小时前
利用DeepSeek辅助WPS电子表格ET格式分析
人工智能·python·wps·插件·duckdb
WSSWWWSSW2 小时前
Matplotlib数据可视化实战:Matplotlib子图布局与管理入门
python·信息可视化·matplotlib
WSSWWWSSW2 小时前
Matplotlib数据可视化实战:Matplotlib图表美化与进阶教程
python·信息可视化·matplotlib
mftang2 小时前
Python可视化工具-Bokeh:动态显示数据
开发语言·python
Seeklike2 小时前
diffuxers学习--AutoPipeline
人工智能·python·stable diffusion·diffusers
前端小趴菜052 小时前
python - 数据类型
python