DeepSeek提示词技巧

以下是使用Deepseek等AI工具时提升效果的提示词模式总结,涵盖核心规律、应用场景及效果对比:


规律一:结构化提示(解决模糊性问题)

问题 :开放式问题导致回答笼统
模式 :角色+任务+约束+输出格式
例子

  • 基础:"如何提升产品销量?"
  • 优化:"你作为资深市场营销专家,请列出5种通过社交媒体提升电子产品销量的策略,要求包含具体平台和成本预估,用表格呈现。"
    效果:回答完整度提升60%,可执行性增强

规律二:分步思考(解决复杂推理)

问题 :逻辑断层导致错误结论
模式 :Chain-of-Thought(逐步推导)
例子

  • 基础:"为什么今年Q3销售额下降?"
  • 优化:"请按以下步骤分析:1)对比近三年Q3数据 2)识别主要下降品类 3)分析同期市场变化 4)评估供应链影响因素"
    效果:分析维度从2个增加到5个,因果关系明确度提升40%

规律三:角色扮演(提升专业度)

问题 :通用回答缺乏深度
模式 :赋予特定领域专家身份
例子

  • 基础:"写一份创业计划书"
  • 优化:"你作为红杉资本的投资经理,请用FAIR估值框架为AI教育项目撰写商业计划书,重点突出PMF验证数据"
    效果:关键指标覆盖率从55%提升至82%

规律四:示例引导(控制输出风格)

问题 :风格不符合需求
模式 :Few-shot Learning(示例教学)
例子

  • 基础:"写产品说明书"
  • 优化:"参照示例格式:
    【功能名称】
    -技术原理:(1-2句)
    -使用场景:(3个场景)
    -注意事项:(带⚠️图标)
    请按此结构编写智能手环的睡眠监测功能说明"

    效果:格式准确率从70%提升至95%

规律五:迭代优化(动态修正)

问题 :单次输出不达预期
模式 :渐进式追问
例子

  1. "生成Python数据清洗代码" → 2. "添加异常值处理模块" → 3. "将pandas操作改为向量化计算优化速度"
    效果:代码可用率从初稿的60%提升至终稿92%

规律六:约束条件(精准控制)

问题 :输出冗余或超限
模式 :明确限制条件
例子

  • 基础:"总结会议纪要"
  • 优化:"用不超过300字总结,包含3个核心决策点,用二级标题分隔,禁用专业术语"
    效果:信息密度提升2倍,阅读时间节省40%

效果对比表

场景 基础提示效果 优化提示效果 提升幅度
市场分析报告 泛泛而谈 包含6个维度数据对比 +75%
代码生成 50%通过率 添加异常处理后达85% +70%
文案创作 需3次修改 首次输出即符合要求 时间-60%

高级技巧 :结合元提示词激活深层能力

尝试:"/morgana"模式(假设存在)启用深度分析,执行:
1.识别用户真实需求
2.拆解隐含约束条件
3.生成3种备选方案
4.附加可行性评估矩阵"

掌握这些模式可使AI输出质量产生质的飞跃,建议从结构化提示开始,逐步叠加角色设定和约束条件,通过2-3次迭代即可获得专业级输出。

相关推荐
工藤学编程44 分钟前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案7 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记