感受野(Receptive Field)

感受野(​​Receptive Field​ ​)是卷积神经网络(CNN)中​​一个神经元在输入图像上能"看到"的区域范围​​。简单来说,它表示某个特征图中的像素点,对应原始输入图像中的多大区域。


​举个栗子🌰​

假设你有一个3×3的卷积核,第一层卷积输出的每个神经元,感受野就是3×3(直接覆盖输入图像的3×3区域)。

如果后续再叠加一个3×3卷积层,第二层神经元的感受野就会扩大到5×5(如下图所示)。

层级越深,感受野越大,网络能"理解"的图像范围越广。


​为什么感受野重要?​

  1. ​决定网络感知能力​
    • 小感受野适合捕捉局部细节(如纹理、边缘)。
    • 大感受野适合理解全局结构(如物体形状、上下文关系)。
  2. ​平衡细节与语义​
    浅层网络感受野小,关注局部特征;深层网络感受野大,提取抽象语义。
  3. ​任务适配​
    • 目标检测中,感受野需覆盖目标物体大小(如大物体需更大的感受野)。
    • 图像分割中,需同时保留局部细节和全局上下文。

​感受野计算公式​

对于第层卷积,感受野大小​ 与前一层的关系为:

其中, 是第 i 层的步长,初始输入的感受野

​示例计算​

假设网络结构如下:

  1. 输入图像 → 卷积层1(
  2. 卷积层1 → 卷积层2(
  3. 卷积层2 → 卷积层3(

    最终第三层的感受野为9×9。

​增大感受野的方法​

方法 原理 特点
​加深网络​ 堆叠更多卷积层 自然扩大,但增加计算量
​增大卷积核​ 直接使用更大的kernel(如5×5) 简单暴力,可能参数量大
​空洞卷积​ 在卷积核中插入空洞(dilation) 不增加参数,扩大感受野
​池化层​ 通过下采样(如最大池化)间接扩大 牺牲空间分辨率

​实际应用技巧​

  1. ​目标检测网络设计​:YOLO、Faster R-CNN 通过多尺度特征融合,兼顾不同感受野。
  2. ​语义分割优化​:使用空洞卷积(如DeepLab系列)保持高分辨率的同时扩大感受野。
  3. ​可视化工具​ :用代码库(如receptivefield)计算各层感受野。

​一句话总结​

感受野决定了神经网络"看得有多广",是平衡局部细节与全局语义的关键参数。

相关推荐
一 铭1 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
顾道长生'2 小时前
(Arxiv-2025)通过动态 token 剔除实现无需训练的高效视频生成
计算机视觉·音视频·视频生成
云泽野3 小时前
【Java|集合类】list遍历的6种方式
java·python·list
麻雀无能为力4 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心4 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
IMPYLH5 小时前
Python 的内置函数 reversed
笔记·python
.30-06Springfield5 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域6 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技6 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_16 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉