Multicore-TSNE

文章目录

TSNE

  • t-Distributed Stochastic Neighbor Embedding (t-SNE) 是一种高维数据的降维方法,由Laurens van der Maaten和Geoffrey Hinton于2008年提出,通常用于数据可视化。其大致原理是在低维(通常是2D或3D)空间中保留高维空间中的距离关系

使用scikit-learn库

使用Multicore-TSNE库

  • Multicore-TSNE的项目地址:
    https://github.com/DmitryUlyanov/Multicore-TSNE

  • 优点:

    • 使用方法与与scikit-learn库基本一致
    • 计算速度相对于scikit-learn库可大幅提升
  • 缺点:

    • 功能相比scikit-learn库大幅减少
    • 默认仅实现了基于欧式距离的降维计算

安装方法

  • 方法1:直接pip安装
bash 复制代码
pip install MulticoreTSNE
  • 方法2:源码编译安装
bash 复制代码
git clone https://github.com/DmitryUlyanov/Multicore-TSNE.git
cd Multicore-TSNE/
pip install .

基本使用方法

  • Multicore-TSNE库的基本使用方法非常简单,与scikit-learn库基本一致:
python3 复制代码
from MulticoreTSNE import MulticoreTSNE as TSNE

tsne = TSNE(n_jobs=4)
Y = tsne.fit_transform(X)

采用不同的距离度量

  • Multicore-TSNE默认仅实现了基于欧式距离的降维计算,然而,很多时候,我们希望采用其他距离度量。幸运的是,根据 https://github.com/DmitryUlyanov/Multicore-TSNE/issues/49 中的回答,已有大佬基于Multicore-TSNE库进行了二次开发,其中可以采用的距离度量包括:
    • Euclidean distance
    • Squared euclidean distance
    • Angular distance
    • Cosine distance (not a real metric)
    • Precomputed distance marix
  • 安装方式:源码编译安装
bash 复制代码
git clone https://github.com/asanakoy/Multicore-TSNE.git
cd Multicore-TSNE/
pip install .
  • 以手动计算特征向量之间的余弦距离为例:
python3 复制代码
from MulticoreTSNE import MulticoreTSNE as TSNE
from sklearn.metrics.pairwise import cosine_similarity

# 计算余弦相似度矩阵
similarity_matrix = cosine_similarity(feats.cpu().numpy())

# 将余弦相似度转换为距离矩阵
distance_matrix = 1 - similarity_matrix

tsne = TSNE(n_jobs=4, metric="precomputed", random_state=42)
X_tsne = tsne.fit_transform(distance_matrix)

其他资料

相关推荐
烟锁池塘柳018 分钟前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
AI数据皮皮侠3 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
张德锋4 小时前
Pytorch实现天气识别
机器学习
Wilber的技术分享6 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19896 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
datagear7 小时前
如何在DataGear 5.4.1 中快速制作HTTP数据源服务端分页的数据表格看板
javascript·数据可视化
JoernLee7 小时前
机器学习算法:支持向量机SVM
人工智能·算法·机器学习
IT古董14 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
wenzhangli715 小时前
OneCode 图表组件核心优势解析
数据可视化
蓝婷儿19 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习